
7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 1/19

Zer0 - zDAO Token

Date May 2021

Lead Auditor David Oz Kashi

Co-auditors Martin Ortner

1 Executive Summary
This report is part of a series of reports presenting the results of our
engagement with zer0 to review zNS, zAuction, and zBanc, zDAO Token.

The review was conducted over four weeks, from 19 April 2021 to 21 May 2021.
A total of 2x4 person-weeks were spent.

1.1 Layout

It was requested to present the results for the four code-bases under review in
individual reports. Links to the individual reports can be found below.

The Executive Summary and Scope sections are shared amongst the individual
reports. They provide a general overview of the engagement and summarize
scope changes and insights into how time was spent during the audit. The
section Recommendations and Findings list the respective �indings for the
component under review.

The following reports were delivered:

zNS

AUDITS FUZZING SCRIBBLE ABOUT

https://consensys.net/diligence/audits/private/lkt3wuldda13yz/
https://consensys.net/diligence
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 2/19

zAuction

zBanc

zDAO-Token

1.2 Assessment Log

In the �irst week, the assessment team focussed its work on the zNS and
zAuction systems. Details on the scope for the components was set by the client

and can be found in the next section. A walkthrough session for the systems in
scope was requested, to understand the fundamental design decisions of the
system as some details were not found in the speci�ication/documentation.
Initial security �indings were also shared with the client during this session. It
was agreed to deliver a preliminary report sharing details of the �indings during
the end-of-week sync-up. This sync-up is also used to set the focus/scope for
the next week.

In the second week, the assessment team focussed its work on zBanc a
modi�ication of the bancor protocol solidity contracts. The initial code revision
under audit (zBanc 48da0ac1eebbe31a74742f1ae4281b156f03a4bc) was updated half-way
into the week on Wednesday to zBanc (3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4).
Preliminary �indings were shared during a sync-up discussing the changing
codebase under review. Thursday morning the client reported that work on the
zDAO Token �inished and it was requested to put it in scope for this week as the

token is meant to be used soon. The assessment team agreed to have a brief
look at the codebase, reporting any obvious security issues at best effort until
the end-of-week sync-up meeting (1day). Due to the very limited left until the
weekly sync-up meeting, it was recommended to extend the review into next
week as. Finally it was agreed to update and deliver the preliminary report
sharing details of the �indings during the end-of-week sync-up. This sync-up is
also used to set the focus/scope for the next week.

In the third week, the assessment team continued working on zDAO Token on
Monday. We provided a heads-up that the snapshot functionality of zDAO Token
was not working the same day. On Tuesday focus shifted towards reviewing
changes to zAuction (135b2aaddcfc70775fd1916518c2cc05106621ec , remarks). On the
same day the client provided an updated review commit for zDAO Token (
81946d451e8a9962b0c0d6fc8222313ec115cd53) addressing the issue we reported on

https://consensys.net/diligence/audits/private/tzhurqdzo2akk1/
https://consensys.net/diligence/audits/private/c7xp44alj3b1q8/
https://consensys.net/diligence/audits/private/s58r1p3v1lapm5/
https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4bc
https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zDAO-Token/commit/81946d451e8a9962b0c0d6fc8222313ec115cd53

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 3/19

Monday. The client provided an updated review commit for zNS (
ab7d62a7b8d51b04abea895e241245674a640fc1) on Wednesday and zNS (
bc5fea725f84ae4025f5fb1a9f03fb7e9926859a) on Thursday.

As can be inferred from this timeline various parts of the codebases were
undergoing changes while the review was performed which introduces
ine�iciencies and may have an impact on the review quality (reviewing frozen
codebase vs. moving target). As discussed with the client we highly recommend
to plan ahead for security activities, create a dedicated role that coordinates
security on the team, and optimize the software development lifecycle to
explicitly include security activities and key milestones, ensuring that code is
frozen, quality tested, and security review readiness is established ahead of any
security activities. It should also be noted that code-style and quality varies a lot
for the different repositories under review which might suggest that there is a
need to better anchor secure development practices in the development
lifecycle.

After a one-week hiatus the assessment team continued reviewing the changes
for zAuction and zBanc . The �indings were initially provided with one combined
report and per client request split into four individual reports.

2 Scope
Our review focused on the following components and code revisions:

2.1 Objectives

Together with the zer0 team, we identi�ied the following priorities for our review:

�. Ensure that the system is implemented consistently with the intended
functionality, and without unintended edge cases.

�. Identify known vulnerabilities particular to smart contract systems, as
outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classi�ication Registry.

2.2 Week - 1

https://github.com/zer0-os/zNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1
https://github.com/zer0-os/zNS/commit/bc5fea725f84ae4025f5fb1a9f03fb7e9926859a
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 4/19

zNS (b05e503ea1ee87dbe62b1d58426aaa518068e395) (scope doc) (1, 2)

zAuction (50d3b6ce6d7ee00e7181d5b2a9a2eedcdd3fdb72) (scope doc) (1, 2)

Original Scope overview document

2.3 Week - 2

zBanc (48da0ac1eebbe31a74742f1ae4281b156f03a4bc) initial commit under review

zBanc (3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4) updated commit under review
(mid of week) (scope doc) (1)

Files in Scope:
contracts/converter/types/dynamic-liquid-token/DynamicLiquidTokenConverter

contracts/converter/types/dynamic-liquid-
token/DynamicLiquidTokenConverterFactory

contracts/converter/ConverterUpgrader.sol (added handling new
converterType 3)

zDAO token provided on thursday (scope doc) (1)
Files in Scope:

ZeroDAOToken.sol

MerkleTokenAirdrop.sol

MerkleTokenVesting.sol

MerkleDistributor.sol

TokenVesting.sol

And any relevant Interfaces / base contracts

The zDAO review in week two was performed best effort from Thursday to Friday
attempting to surface any obvious issues until the end-of-week sync-up
meeting.

2.4 Week - 3

Continuing on zDAO token (1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6)

Updated review commit for zAuction (135b2aaddcfc70775fd1916518c2cc05106621ec ,
1) on Monday

Updated review commit for zDAO Token (
81946d451e8a9962b0c0d6fc8222313ec115cd53) on Tuesday

https://github.com/zer0-os/ZNS/commit/b05e503ea1ee87dbe62b1d58426aaa518068e395
https://docs.google.com/document/d/1BCpezFQloL3vn6x9KMbimbdDk9O-E9qyKR9465VZzn8/edit
https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/doc/ZNS%20Audit%20Checklist.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/doc/Zer0%20ZNS%20-%20Audit%20Checkpoint.pdf
https://github.com/zer0-os/zAuction/commit/50d3b6ce6d7ee00e7181d5b2a9a2eedcdd3fdb72
https://docs.google.com/document/d/1PQLhvhFd-5OCVxZO5vQlx2zmIPGnxFRIJVIItO18YEE
https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/doc/zAuction%20audit%20prep.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/doc/zAuction%20spec.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/doc/Zer0%20Audit.pdf
https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4bc
https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4
https://docs.google.com/document/d/1NIq6XwEByhliWjDlk032JQspkLoNzJTMtJrBb2jTUJc/edit
https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/doc/zBanc%20audit%20prep.pdf
https://github.com/zer0-os/zDAO-Token/commit/1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6
https://docs.google.com/document/d/1DocRfk_rv7aTi2U_PyYi6HJR2BZJ_-eRjqJgFKoP5yE/edit#
https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/doc/Zer0%20DAO%20Token.pdf
https://github.com/zer0-os/zDAO-Token/commit/1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zDAO-Token/commit/81946d451e8a9962b0c0d6fc8222313ec115cd53

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 5/19

Updated review commit for zNS (ab7d62a7b8d51b04abea895e241245674a640fc1) on
Wednesday

Updated review commit for zNS (bc5fea725f84ae4025f5fb1a9f03fb7e9926859a) on
Thursday

2.5 Hiatus - 1 Week

The assessment continues for a �inal week after a one-week long hiatus.

2.6 Week - 4

Updated review commit for zAuction (2f92aa1c9cd0c53ec046340d35152460a5fe7dd0 ,
1)

Updated review commit for zAuction addressing our remarks

Updated review commit for zBanc (ff3d91390099a4f729fe50c846485589de4f8173 , 1)

3 Update: 23 Aug 2021 - WILD Token
On 20 Aug 2021 the client requested the inclusion of a deployed instance of the
zDAOToken named WILD to this report. The WILD token at

0x2a3bff78b79a009976eea096a51a948a3dc00e34 (proxy) (implementation) is
a slightly modi�ied variant of the zDAOToken initially under review. A new function
initializeImplementation() has been added for the purpose of initializing the

implementation after deployment.

https://github.com/zer0-os/zDAO-Token/commit/ab7d62a7b8d51b04abea895e241245674a640fc1
https://github.com/zer0-os/zDAO-Token/commit/bc5fea725f84ae4025f5fb1a9f03fb7e9926859a
https://github.com/zer0-os/zAuction/commit/2f92aa1c9cd0c53ec046340d35152460a5fe7dd0
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zAuction/commit/8ff0eab02e5c23bb513d90e3ff1ba8fa04f81b7a
https://github.com/zer0-os/zBanc/commit/ff3d91390099a4f729fe50c846485589de4f8173
https://docs.google.com/document/d/10hAa4KllGX-c6i7n_cfPcrTBxWD3ehyXaHAZ9G53ItM/edit
https://etherscan.io/token/0x2a3bff78b79a009976eea096a51a948a3dc00e34
https://etherscan.io/address/0x67aac030b59d266e754b0b24af9cc77ec2534a37#code

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 6/19

⇒ diff zDAO-Token/contracts/ZeroDAOToken.sol deployed.sol --unified
--- zDAO-Token/contracts/ZeroDAOToken.sol 2021-05-19 14:35:42.000000000 +
+++ deployed.sol 2021-08-23 13:44:09.000000000 +0200
@@ -31,6 +31,12 @@
 __ERC20Pausable_init();
 }

+ // Call this on the implementation contract (not the proxy)
+ function initializeImplementation() public initializer {
+ __Ownable_init();
+ _pause();
+ }
+
 /**
 * Mints new tokens.
 * @param account the account to mint the tokens for

We would like to note that instead of having a dedicated new method
initializeImplementation() it would be more natural to enforce an initialization and
pause() in the constructor instead. This way the implementation gets paused

immediately at deployment and no other - potentially front-runnable -
transaction is required. It should further be noted that the AdminUpgradeabilityProxy

contract deployed at 0x2a3bff78b79a009976eea096a51a948a3dc00e34 was
not in scope of this review. A bytecode veri�ication was not performed. The
deployed contract lexically matches the upstream ZeroDAOToken .

4 System Overview
This section describes the top-level/deployable contracts, their inheritance
structure and interfaces, actors, permissions and important contract
interactions of the initial system under review. This section does not take any
fundamental changes into account that were introduced during or after the
review was conducted.

Contracts are depicted as boxes. Public reachable interface methods are
outlined as rows in the box. The 🔍 icon indicates that a method is declared as
non-state-changing (view/pure) while other methods may change state. A yellow
dashed row at the top of the contract shows inherited contracts. A green

https://etherscan.io/address/0x67aac030b59d266e754b0b24af9cc77ec2534a37
https://etherscan.io/token/0x2a3bff78b79a009976eea096a51a948a3dc00e34
https://github.com/zer0-os/zToken/blob/0928ea5a8b363c0f93dd7ba47f303c2eb1507cd0/contracts/ZeroDAOToken.sol

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 7/19

dashed row at the top of the contract indicates that that contract is used in a
usingFor declaration. Modi�iers used as ACL are connected as yellow bubbles in
front of methods.

ZeroDAOToken
OwnableUpgradeable

ERC20Upgradeable

ERC20PausableUpgradeable

ERC20SnapshotUpgradeable

initialize

mint

burn

pause

unpause

transferBulk

transferFromBulk

initializer

onlyOwner

onlyOwner

onlyOwner

onlyOwner

ERC20Upgradeable
Initializable

ContextUpgradeable

IERC20Upgradeable

🔍 name

🔍 symbol

🔍 decimals

🔍 totalSupply

🔍 balanceOf

transfer

🔍 allowance

approve

transferFrom

increaseAllowance

decreaseAllowance

ERC20SnapshotUpgradeable
Initializable

ERC20Upgradeable

ArraysUpgradeable

CountersUpgradeable

🔍 balanceOfAt

🔍 totalSupplyAt

OwnableUpgradeable
Initializable

ContextUpgradeable

🔍 owner

renounceOwnership

transferOwnership

onlyOwner

onlyOwner

zDAO Token

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/img/zero_zdao_token.svg

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 8/19

MerkleTokenAirdrop
MerkleDistributor

SafeERC20

__constr__

claim

MerkleTokenVesting
TokenVesting

MerkleDistributor

initialize

claimAward

initializer

TokenVesting
OwnableUpgradeable

SafeERC20

release

revoke

🔍 getReleasableAmount

🔍 getVestedAmount

onlyOwner

OwnableUpgradeable
Initializable

ContextUpgradeable

🔍 owner

renounceOwnership

transferOwnership

onlyOwner

onlyOwner

MerkleDistributor

🔍 isClaimed

zDAO Merkledrop/Vesting

The zDAO Token speci�ication can be found in the project’s repository. The
system is comprised of three main components:

zDAO Token

Merkle Tree Token Vesting

Merkle Tree Airdrop

The token is mintable , burnable , and pausable . The owner of the contract has
wide-ranging power of the token and can mint/burn and pause at will. It is,
therefore, important for users to verify that the token is owned by the zero DAO
as mentioned in the speci�ication:

The owner of the token contract has the ability to mint and burn
tokens. The intended owner of this token is a Zer0 DAO.

The airdrop and vesting contracts are based on the Merkledistributor patterns.
Users can claim tokens by proving to be part of the merkleroot. It should be
noted that the merkle proof does not enforce that the proof item is a leaf node
nor if the item is at the speci�ic index. An attack on this is rather unlikely as it still
means that someone would need to �ind a keccak preimage. Tokens that are not

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/img/zero_zdao_merkle.svg
https://github.com/zer0-os/zDAO-Token/tree/3b5b2a08c3566eb05da49079cddd7d9a6548adb7/docs

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 9/19

claimed remain in the contract forever. Users have to trust the deployer of the
vesting or airdrop contracts to provide su�icient tokens in order for everyone to
be able to claim their share. There is no way to verify that there are enough
tokens which might suggest that users may want to claim early. Some vestings
can be revoked. However, they can only be revoked if they’re claimed from the
distributor. This means, that users might employ a strategy to claim late in order
to avoid getting their vesting revoked. However, the deployer can claim + revoke
for them (spending extra gas) to force a revocation.

5 Recommendations
5.1 Ensure that implementations of upgradeable contracts are
initialized

Description

It is recommended to check whether implementations/logic contracts used with
the OZ upgradability pattern may be left uninitialized. While these logic
contracts are typically not consumed directly (they are only delegated to) they
may still be claimable by anyone as the initialize function is not access
protected. This is usually not a problem unless there’s a way to self-destruct the
contract. However, there is a risk of reputational damage if someone initialized
the implementation in an attempt to carry out a malicious campaign potentially
tricky users into believing this is the legitimate contract while it’s only the logic
contract for an upgradeable contract.

5.2 zDAO Token - reject calls that have no effect - zero value
transfers

Description

Consider returning or bailing early for calls that have no effect on the system,
like if the total amount transferred is zero (empty recipients, zero amount).
Consider rejecting transfers to the contract address to avoid tokens getting
stuck.

zDAO-Token/contracts/ZeroDAOToken.sol:L68-L78

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 10/19

function transferBulk(address[] calldata recipients, uint256 amount)
 external
 returns (bool)
{
 address sender = _msgSender();

 uint256 total = amount * recipients.length;
 require(
 _balances[sender] >= total,
 "ERC20: transfer amount exceeds balance"
);

5.3 zDAO Token - check contract state before wasting gas on
calculations

Description

Consider checking if a contract is paused as the �irst thing in the function to
avoid unnecessarily wasting gas on calculations for a call that will always fail (if
the contract is paused).

zDAO-Token/contracts/ZeroDAOToken.sol:L80-L81

require(!paused(), "ERC20Pausable: token transfer while paused");

6 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around
best practices or readability. Code maintainers should use their own
judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 11/19

should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
�ixed.

6.1 zDAO Token - Specification violation - Snapshots are never
taken Major Partially Addressed

Resolution

Addressed with zer0-os/zDAO-Token@ 81946d4 by exposing the _snapshot()

method to a dedicated snapshot role (likely to be a DAO) and the owner of
the contract.

We would like to note that we informed the client that depending on how
the snapshot method is used and how predictably snapshots are consumed
this might open up a frontrunning vector where someone observing that a
_snapshot() is about to be taken might sandwich the snapshot call,

accumulate a lot of stake (via 2nd markets, lending platforms), and
returning it right after it’s been taken. The risk of losing funds may be rather
low (especially if performed by a miner) and the bene�it from a DAO
proposal using this snapshot might outweigh it. It is still recommended to
increase the number of snapshots taken or take them on a regular basis
(e.g. with every �irst transaction to the contract in a block) to make it harder
to sandwich the snapshot taking.

Description

According to the zDAO Token speci�ication the DAO token should implement a
snapshot functionality to allow it being used for DAO governance votings.

Any transfer, mint, or burn operation should result in a snapshot of the
token balances of involved users being taken.

https://github.com/zer0-os/zDAO-Token/commit/81946d451e8a9962b0c0d6fc8222313ec115cd53
https://github.com/zer0-os/zDAO-Token/blob/a053e1d7314ed62bccfc70a5110ef2dd5546deec/docs/zdaotoken.md#balance-snapshotting

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 12/19

While the corresponding functionality is implemented and appears to update
balances for snapshots, _snapshot() is never called, therefore, the snapshot is
never taken. e.g. attempting to call balanceOfAt always results in an error as no
snapshot is available.

zDAO-Token/contracts/ZeroDAOToken.sol:L12-L17

contract ZeroDAOToken is
 OwnableUpgradeable,
 ERC20Upgradeable,
 ERC20PausableUpgradeable,
 ERC20SnapshotUpgradeable
{

zDAO-Token/contracts/ZeroDAOToken.sol:L83-L83

_updateAccountSnapshot(sender);

Note that this is an explicit requirement as per speci�ication but unit tests do not
seem to attempt calls to balanceOfAt at all.

Recommendation

Actually, take a snapshot by calling _snapshot() once per block when executing
the �irst transaction in a new block. Follow the openzeppeling documentation
for ERC20Snapshot.

6.2 zDAO-Token - Revoking vesting tokens right before cliff
period expiration might be delayed/front-runned Minor

Description

The owner of TokenVesting contract has the right to revoke the vesting of tokens
for any beneficiary . By doing so, the amount of tokens that are already vested
and weren’t released yet are being transferred to the beneficiary , and the rest
are being transferred to the owner. The bene�iciary is expected to receive zero
tokens in case the revocation transaction was executed before the cliff period is
over. Although unlikely, the bene�iciary may front run this revocation transaction

https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#ERC20Snapshot

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 13/19

by delaying the revocation (and) or inserting a release transaction right before
that, thus withdrawing the vested amount.

zDAO-Token/contracts/TokenVesting.sol:L69-L109

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 14/19

function release(address beneficiary) public {
 uint256 unreleased = getReleasableAmount(beneficiary);
 require(unreleased > 0, "Nothing to release");

 TokenAward storage award = getTokenAwardStorage(beneficiary);
 award.released += unreleased;

 targetToken.safeTransfer(beneficiary, unreleased);

 emit Released(beneficiary, unreleased);
}

/**
 * @notice Allows the owner to revoke the vesting. Tokens already vested
 * are transfered to the beneficiary, the rest are returned to the owner.
 * @param beneficiary Who the tokens are being released to
 */
function revoke(address beneficiary) public onlyOwner {
 TokenAward storage award = getTokenAwardStorage(beneficiary);

 require(award.revocable, "Cannot be revoked");
 require(!award.revoked, "Already revoked");

 // Figure out how many tokens were owed up until revocation
 uint256 unreleased = getReleasableAmount(beneficiary);
 award.released += unreleased;

 uint256 refund = award.amount - award.released;

 // Mark award as revoked
 award.revoked = true;
 award.amount = award.released;

 // Transfer owed vested tokens to beneficiary
 targetToken.safeTransfer(beneficiary, unreleased);
 // Transfer unvested tokens to owner (revoked amount)
 targetToken.safeTransfer(owner(), refund);

 emit Released(beneficiary, unreleased);
 emit Revoked(beneficiary, refund);
}

Recommendation

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 15/19

The issue described above is possible, but very unlikely. However, the
TokenVesting owner should be aware of that, and make sure not to revoke vested

tokens closely to cliff period ending.

6.3 zDAO-Token - Vested tokens revocation depends on
claiming state Minor

Description

The owner of the TokenVesting contract can revoke the vesting of tokens for any
bene�iciary by calling TokenVesting.revoke only for tokens that have already been
claimed using MerkleTokenVesting.claimAward . Although anyone can call
MerkleTokenVesting.claimAward for a given bene�iciary, in practice it is mostly the

bene�iciary’s responsibility. This design decision, however, incentivizes the
bene�iciary to delay the call to MerkleTokenVesting.claimAward up to the point when
he wishes to cash out, to avoid potential revocation. To revoke vesting tokens
the owner will have to claim the award on the bene�iciary’s behalf �irst (which
might be a gas burden), then call TokenVesting.revoke .

Examples

zDAO-Token/contracts/TokenVesting.sol:L86-L109

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 16/19

function revoke(address beneficiary) public onlyOwner {
 TokenAward storage award = getTokenAwardStorage(beneficiary);

 require(award.revocable, "Cannot be revoked");
 require(!award.revoked, "Already revoked");

 // Figure out how many tokens were owed up until revocation
 uint256 unreleased = getReleasableAmount(beneficiary);
 award.released += unreleased;

 uint256 refund = award.amount - award.released;

 // Mark award as revoked
 award.revoked = true;
 award.amount = award.released;

 // Transfer owed vested tokens to beneficiary
 targetToken.safeTransfer(beneficiary, unreleased);
 // Transfer unvested tokens to owner (revoked amount)
 targetToken.safeTransfer(owner(), refund);

 emit Released(beneficiary, unreleased);
 emit Revoked(beneficiary, refund);
}

Recommendation

Make sure that the potential owner of a TokenVesting contract is aware of this
potential issue, and has the required processes in place to handle it.

6.4 zDAO-Token - Total amount of claimable tokens is not
verifiable Minor ✓ Fixed

Description

Since both MerkleTokenVesting and MerkleTokenAirdrop use an off-chain Merkle tree
to store the accounts that can claim tokens from the underlying contract, there
is no way for a user to verify whether the contract token balance is su�icient for
all claimers.

Recommendation

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 17/19

Make sure that users are aware of this trust assumption.

7 Document Change Log
Version Date Description

1.0 2021-05-20 Initial report

1.1 2021-08-23 Update: added section 3 - WILD Token

Appendix 1 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more
clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via
ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or
team, and the Reports do not guarantee the security of any particular project.
This Report does not consider, and should not be interpreted as considering or
having any bearing on, the potential economics of a token, token sale or any
other product, service or other asset. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.
No Report provides any warranty or representation to any Third-Party in any
respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the
purpose of making any decisions to buy or sell any token, product, service or
other asset. Speci�ically, for the avoidance of doubt, this Report does not
constitute investment advice, is not intended to be relied upon as investment
advice, is not an endorsement of this project or team, and it is not a guarantee
as to the absolute security of the project. CD owes no duty to any Third-Party by
virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 18/19

the scope of our review within this report. Any Solidity code itself presents
unique and unquanti�iable risks as the Solidity language itself remains under
development and is subject to unknown risks and �laws. The review does not
extend to the compiler layer, or any other areas beyond speci�ied code that
could present security risks. Cryptographic tokens are emergent technologies
and carry with them high levels of technical risk and uncertainty. In some
instances, we may perform penetration testing or infrastructure assessments
depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best practices
in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext
or other computer links, gain access to web sites operated by persons other
than ConsenSys and CD. Such hyperlinks are provided for your reference and
convenience only, and are the exclusive responsibility of such web sites' owners.
You agree that ConsenSys and CD are not responsible for the content or
operation of such Web sites, and that ConsenSys and CD shall have no liability
to you or any other person or entity for the use of third party Web sites. Except
as described below, a hyperlink from this web Site to another web site does not
imply or mean that ConsenSys and CD endorses the content on that Web site or
the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites
to which you link from the Reports. ConsenSys and CD assumes no
responsibility for the use of third party software on the Web Site and shall have
no liability whatsoever to any person or entity for the accuracy or completeness
of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of
the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

7/22/22, 8:40 AM Zer0 - zDAO Token | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zdao-token/ 19/19

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit.

A U D I T S

F U Z Z I N G

S C R I B B L E

B L O G

T O O L S

R E S E A R C H

A B O U T

C O N TA C T

C A R E E R S

P R I VA C Y
P O L I C Y

Subscribe to Our Newsletter
Stay up-to-date on our latest offerings,
tools, and the world of blockchain
security.

Email*

liz.daldalian@gmail.com

→

CONTACT US

https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/privacy-policy/
https://consensys.net/
https://consensys.net/diligence/contact/

