
7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 1/32

Zer0 - zNS

Date May 2021

Lead Auditor David Oz Kashi

Co-auditors Martin Ortner

1 Executive Summary
This report is part of a series of reports presenting the results of our
engagement with zer0 to review zNS, zAuction, and zBanc, zDAO Token.

The review was conducted over four weeks, from 19 April 2021 to 21 May 2021.
A total of 2x4 person-weeks were spent.

1.1 Layout

It was requested to present the results for the four code-bases under review in
individual reports. Links to the individual reports can be found below.

The Executive Summary and Scope sections are shared amongst the individual
reports. They provide a general overview of the engagement and summarize
scope changes and insights into how time was spent during the audit. The
section Recommendations and Findings list the respective findings for the
component under review.

The following reports were delivered:

zNS

AUDITS
FUZZING
SCRIBBLE
ABOUT

https://consensys.net/diligence/audits/private/lkt3wuldda13yz/
https://consensys.net/diligence
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 2/32

zAuction

zBanc

zDAO-Token

1.2 Assessment Log

In the first week, the assessment team focussed its work on the zNS and
zAuction systems. Details on the scope for the components was set by the client

and can be found in the next section. A walkthrough session for the systems in
scope was requested, to understand the fundamental design decisions of the
system as some details were not found in the specification/documentation.
Initial security findings were also shared with the client during this session. It
was agreed to deliver a preliminary report sharing details of the findings during
the end-of-week sync-up. This sync-up is also used to set the focus/scope for
the next week.

In the second week, the assessment team focussed its work on zBanc a
modification of the bancor protocol solidity contracts. The initial code revision
under audit (zBanc 48da0ac1eebbe31a74742f1ae4281b156f03a4bc) was updated half-way
into the week on Wednesday to zBanc (3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4).
Preliminary findings were shared during a sync-up discussing the changing
codebase under review. Thursday morning the client reported that work on the
zDAO Token finished and it was requested to put it in scope for this week as the

token is meant to be used soon. The assessment team agreed to have a brief
look at the codebase, reporting any obvious security issues at best effort until
the end-of-week sync-up meeting (1day). Due to the very limited left until the
weekly sync-up meeting, it was recommended to extend the review into next
week as. Finally it was agreed to update and deliver the preliminary report
sharing details of the findings during the end-of-week sync-up. This sync-up is
also used to set the focus/scope for the next week.

In the third week, the assessment team continued working on zDAO Token on
Monday. We provided a heads-up that the snapshot functionality of zDAO Token
was not working the same day. On Tuesday focus shifted towards reviewing
changes to zAuction (135b2aaddcfc70775fd1916518c2cc05106621ec , remarks). On the
same day the client provided an updated review commit for zDAO Token (
81946d451e8a9962b0c0d6fc8222313ec115cd53) addressing the issue we reported on

https://consensys.net/diligence/audits/private/tzhurqdzo2akk1/
https://consensys.net/diligence/audits/private/c7xp44alj3b1q8/
https://consensys.net/diligence/audits/private/s58r1p3v1lapm5/
https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4bc
https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zDAO-Token/commit/81946d451e8a9962b0c0d6fc8222313ec115cd53

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 3/32

Monday. The client provided an updated review commit for zNS (
ab7d62a7b8d51b04abea895e241245674a640fc1) on Wednesday and zNS (
bc5fea725f84ae4025f5fb1a9f03fb7e9926859a) on Thursday.

As can be inferred from this timeline various parts of the codebases were
undergoing changes while the review was performed which introduces
inefficiencies and may have an impact on the review quality (reviewing frozen
codebase vs. moving target). As discussed with the client we highly recommend
to plan ahead for security activities, create a dedicated role that coordinates
security on the team, and optimize the software development lifecycle to
explicitly include security activities and key milestones, ensuring that code is
frozen, quality tested, and security review readiness is established ahead of any
security activities. It should also be noted that code-style and quality varies a lot
for the different repositories under review which might suggest that there is a
need to better anchor secure development practices in the development
lifecycle.

After a one-week hiatus the assessment team continued reviewing the changes
for zAuction and zBanc . The findings were initially provided with one combined
report and per client request split into four individual reports.

2 Scope
Our review focused on the following components and code revisions:

2.1 Objectives

Together with the zer0 team, we identified the following priorities for our review:

1. Ensure that the system is implemented consistently with the intended
functionality, and without unintended edge cases.

2. Identify known vulnerabilities particular to smart contract systems, as
outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classification Registry.

2.2 Week - 1

https://github.com/zer0-os/zNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1
https://github.com/zer0-os/zNS/commit/bc5fea725f84ae4025f5fb1a9f03fb7e9926859a
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 4/32

zNS (b05e503ea1ee87dbe62b1d58426aaa518068e395) (scope doc) (1, 2)

zAuction (50d3b6ce6d7ee00e7181d5b2a9a2eedcdd3fdb72) (scope doc) (1, 2)

Original Scope overview document

2.3 Week - 2

zBanc (48da0ac1eebbe31a74742f1ae4281b156f03a4bc) initial commit under review

zBanc (3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4) updated commit under review
(mid of week) (scope doc) (1)

Files in Scope:
contracts/converter/types/dynamic-liquid-token/DynamicLiquidTokenConverter

contracts/converter/types/dynamic-liquid-
token/DynamicLiquidTokenConverterFactory

contracts/converter/ConverterUpgrader.sol (added handling new
converterType 3)

zDAO token provided on thursday (scope doc) (1)
Files in Scope:

ZeroDAOToken.sol

MerkleTokenAirdrop.sol

MerkleTokenVesting.sol

MerkleDistributor.sol

TokenVesting.sol

And any relevant Interfaces / base contracts

The zDAO review in week two was performed best effort from Thursday to Friday
attempting to surface any obvious issues until the end-of-week sync-up
meeting.

2.4 Week - 3

Continuing on zDAO token (1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6)

Updated review commit for zAuction (135b2aaddcfc70775fd1916518c2cc05106621ec ,
1) on Monday

Updated review commit for zDAO Token (
81946d451e8a9962b0c0d6fc8222313ec115cd53) on Tuesday

https://github.com/zer0-os/ZNS/commit/b05e503ea1ee87dbe62b1d58426aaa518068e395
https://docs.google.com/document/d/1BCpezFQloL3vn6x9KMbimbdDk9O-E9qyKR9465VZzn8/edit
https://consensys.net/diligence/audits/2021/05/zer0-zns/doc/ZNS%20Audit%20Checklist.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zns/doc/Zer0%20ZNS%20-%20Audit%20Checkpoint.pdf
https://github.com/zer0-os/zAuction/commit/50d3b6ce6d7ee00e7181d5b2a9a2eedcdd3fdb72
https://docs.google.com/document/d/1PQLhvhFd-5OCVxZO5vQlx2zmIPGnxFRIJVIItO18YEE
https://consensys.net/diligence/audits/2021/05/zer0-zns/doc/zAuction%20audit%20prep.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zns/doc/zAuction%20spec.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zns/doc/Zer0%20Audit.pdf
https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4bc
https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4
https://docs.google.com/document/d/1NIq6XwEByhliWjDlk032JQspkLoNzJTMtJrBb2jTUJc/edit
https://consensys.net/diligence/audits/2021/05/zer0-zns/doc/zBanc%20audit%20prep.pdf
https://github.com/zer0-os/zDAO-Token/commit/1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6
https://docs.google.com/document/d/1DocRfk_rv7aTi2U_PyYi6HJR2BZJ_-eRjqJgFKoP5yE/edit#
https://consensys.net/diligence/audits/2021/05/zer0-zns/doc/Zer0%20DAO%20Token.pdf
https://github.com/zer0-os/zDAO-Token/commit/1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zDAO-Token/commit/81946d451e8a9962b0c0d6fc8222313ec115cd53

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 5/32

Updated review commit for zNS (ab7d62a7b8d51b04abea895e241245674a640fc1) on
Wednesday

Updated review commit for zNS (bc5fea725f84ae4025f5fb1a9f03fb7e9926859a) on
Thursday

2.5 Hiatus - 1 Week

The assessment continues for a final week after a one-week long hiatus.

2.6 Week - 4

Updated review commit for zAuction (2f92aa1c9cd0c53ec046340d35152460a5fe7dd0 ,
1)

Updated review commit for zAuction addressing our remarks

Updated review commit for zBanc (ff3d91390099a4f729fe50c846485589de4f8173 , 1)

3 System Overview
This section describes the top-level/deployable contracts, their inheritance
structure and interfaces, actors, permissions and important contract
interactions of the initial system under review. This section does not take any
fundamental changes into account that were introduced during or after the
review was conducted.

Contracts are depicted as boxes. Public reachable interface methods are
outlined as rows in the box. The 🔍 icon indicates that a method is declared as
non-state-changing (view/pure) while other methods may change state. A yellow
dashed row at the top of the contract shows inherited contracts. A green
dashed row at the top of the contract indicates that that contract is used in a
usingFor declaration. Modifiers used as ACL are connected as yellow bubbles in
front of methods.

https://github.com/zer0-os/zDAO-Token/commit/ab7d62a7b8d51b04abea895e241245674a640fc1
https://github.com/zer0-os/zDAO-Token/commit/bc5fea725f84ae4025f5fb1a9f03fb7e9926859a
https://github.com/zer0-os/zAuction/commit/2f92aa1c9cd0c53ec046340d35152460a5fe7dd0
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zAuction/commit/8ff0eab02e5c23bb513d90e3ff1ba8fa04f81b7a
https://github.com/zer0-os/zBanc/commit/ff3d91390099a4f729fe50c846485589de4f8173
https://docs.google.com/document/d/10hAa4KllGX-c6i7n_cfPcrTBxWD3ehyXaHAZ9G53ItM/edit

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 6/32

BasicController
IBasicController

ContextUpgradeable

ERC165Upgradeable

ERC721HolderUpgradeable

initialize

registerDomain

registerSubdomain

registerSubdomainExtended

initializer

authorized

authorized

authorized

owner

ERC165Upgradeable
Initializable

IERC165Upgradeable

🔍 supportsInterface

ERC721HolderUpgradeable
Initializable

IERC721ReceiverUpgradeable

onERC721Received

Registrar
IRegistrar

OwnableUpgradeable

ERC721PausableUpgradeable

initialize

addController

removeController

registerDomain

setDomainRoyaltyAmount

setDomainMetadataUri

lockDomainMetadata

lockDomainMetadataForOwner

unlockDomainMetadata

🔍 isAvailable

🔍 domainExists

🔍 minterOf

🔍 isDomainMetadataLocked

🔍 domainMetadataLockedBy

🔍 domainController

🔍 domainRoyaltyAmount

initializer

onlyOwner

onlyOwner

onlyController

onlyOwnerOf

onlyOwnerOf

onlyOwnerOf

onlyController

controllerdomainOwner

minter

locker

onlyLocker

OwnableUpgradeable
Initializable

ContextUpgradeable

🔍 owner

renounceOwnership

transferOwnership

onlyOwner

onlyOwner

newOwner

ERC721Upgradeable
Initializable

ContextUpgradeable

ERC165Upgradeable

IERC721Upgradeable

IERC721MetadataUpgradeable

IERC721EnumerableUpgradeable

SafeMathUpgradeable

AddressUpgradeable

EnumerableSetUpgradeable

EnumerableMapUpgradeable

StringsUpgradeable

🔍 balanceOf

🔍 ownerOf

🔍 name

🔍 symbol

🔍 tokenURI

🔍 baseURI

🔍 tokenOfOwnerByIndex

🔍 totalSupply

🔍 tokenByIndex

approve

🔍 getApproved

setApprovalForAll

🔍 isApprovedForAll

transferFrom

safeTransferFrom

safeTransferFrom

owner

to

operator

from

spender

ERC165Upgradeable
Initializable

IERC165Upgradeable

🔍 supportsInterface

PausableUpgradeable
Initializable

ContextUpgradeable

🔍 paused

StakingController
Initializable

ContextUpgradeable

ERC165Upgradeable

ERC721HolderUpgradeable

ECDSAUpgradeable

SafeERC20Upgradeable

initialize

placeDomainBid

approveDomainBid

fulfillDomainBid

🔍 recover

🔍 createBid

initializer

authorizedOwner

controller

recipient

ERC165Upgradeable
Initializable

IERC165Upgradeable

🔍 supportsInterface

ERC721HolderUpgradeable
Initializable

IERC721ReceiverUpgradeable

onERC721Received

zNS

zNS

https://consensys.net/diligence/audits/2021/05/zer0-zns/img/zns.svg

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 7/32

zNS is the zer0 name system. It is comprised of three main components. A
BaseController that allows owners of domains to create subdomains. It was a

design decision that an owner has full control of their sub-namespace and can
create sub-domains at will. A domain name is represented by an NFT
implemented in Registrar . Ownership can be freely transferred but domain NFT’s
cannot be burned. Domains cannot be recovered if the owner loses access to its
account. Domains do not expire or require renewal. Other accounts can bid on
subdoimains on a 2nd layer. The owner can then accept bids and transfer
complete ownership of a sub-namespace to that account. Domain NFT’s can
contain metadata that can be locked by the current owner of the token. An
owner may lock domain metadata before transferring ownership and the new
owner will not be able to unlock it. However, the original locking account can at
any time unlock the metadata remotely even without currently owning the
account. Depending on the use-case and system design this may have
security/trust implications together with the fact that the owner - if the nft is
unlocked - might frontrun transactions to change the royaltyAmount in % which
might have unpredictable consequences depending on how the royalty system
works. Domain information is made available in a subgraph. The subgraph’s
domain separator is a . .

4 Recommendations
4.1 Ensure that implementations of upgradeable contracts
are initialized

Description

It is recommended to check whether implementations/logic contracts used with
the OZ upgradability pattern may be left uninitialized. While these logic
contracts are typically not consumed directly (they are only delegated to) they
may still be claimable by anyone as the initialize function is not access
protected. This is usually not a problem unless there’s a way to self-destruct the
contract. However, there is a risk of reputational damage if someone initialized
the implementation in an attempt to carry out a malicious campaign potentially
tricky users into believing this is the legitimate contract while it’s only the logic
contract for an upgradeable contract.

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 8/32

4.2 zNS - prepare for domain name canonicalisation and
potential injection vectors

Description

The off-chain components are not in scope for this review, however, it should be
noted that there is a significant risk that domain names may include non-
printable or control characters. Depending on the presentation layer of the
application this may allow someone to register names that are visually
indistinguishable from other domains in a console or web application (e.g. by
adding zero bytes, spaces, delete character, newlines, non-printables, …) or
contain payloads that exploit injection vectors in consuming applications.

It is therefore highly recommended to canonicalize domain names or properly
encode them before displaying or consuming them with other applications.

4.3 zNS - potential gas optimizations

Description

the check for registrar.domainExists(domain) might be redundant as
registrar.ownerOf(domain) == _msgSender() should fail for unknown nft ids anyway

zNS/contracts/BasicController.sol:L21-L28

modifier authorized(uint256 domain) {

 require(registrar.domainExists(domain), "Zer0 Controller: Invalid Domain");

 require(

 registrar.ownerOf(domain) == _msgSender(),

 "Zer0 Controller: Not Authorized"

);

 _;

}

rootdomain owner might directly call registerSubdomain instead of
registerDomain to save gas on the public call and duplicate authorization

check

zNS/contracts/BasicController.sol:L38-L55

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 9/32

function registerDomain(string memory domain, address owner)

 public

 override
 authorized(rootDomain)

{

 registerSubdomain(rootDomain, domain, owner);

}

function registerSubdomain(

 uint256 parentId,

 string memory label,

 address owner

) public override authorized(parentId) {

 address minter = _msgSender();

 uint256 id = registrar.registerDomain(parentId, label, owner, minter);

 emit RegisteredDomain(label, id, parentId, owner, minter);

}

StakingController - address controller storage holds the value of address(this)
throughout the entire contract, thus could simply be removed to save gas
costs by avoiding unnecessary storage operations.

4.4 Where possible, a specific contract type should be used
rather than address Acknowledged

Description

Consider using the best type available in the function arguments and
declarations instead of accepting address and later casting it to the correct type.

Examples

This is only one of many examples.

zAuction/contracts/zAuction.sol:L22-L26

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 10/32

function init(address accountantaddress) external {

 require(!initialized);

 initialized = true;

 accountant = zAuctionAccountant(accountantaddress);

}

zAuction/contracts/zAuction.sol:L52-L54

IERC721 nftcontract = IERC721(nftaddress);

weth.transferFrom(bidder, msg.sender, bid);

nftcontract.transferFrom(msg.sender, bidder, tokenid);

zAuction/contracts/zAuction.sol:L40-L42

IERC721 nftcontract = IERC721(nftaddress);

accountant.Exchange(bidder, msg.sender, bid);

nftcontract.transferFrom(msg.sender, bidder, tokenid);

zAuction/contracts/zAuctionAccountant.sol:L60-L63

function SetZauction(address zauctionaddress) external onlyAdmin{

 zauction = zauctionaddress;

 emit ZauctionSet(zauctionaddress);

}

4.5 zNS, zAuction - check for inconsistent use of ERC-721
safe* family of methods ✓ Fixed

Resolution

Addressed with the following changes switching to the safe* family of
methods (note that for erc721 this can introduce potentially reentrancy
vectory):

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 11/32

zer0-os/zAuction@ 135b2aa . The client provided the following
statement:

4.9 safeTransferFrom used in Zauction and Zsale

zer0-os/ZNS@ ab7d62a

Description

Domains are minted using safeMint which checks that the recipient accepts the
token if it is a contract. This is basically to avoid that tokens get locked up in
contracts by accident.

When transferring the token the system is not using the safeTransferFrom method
which would perform the same checks. this appears to be inconsistent as
creating a domain would check this condition, but transferring the token won’t.

This may be a design decision, however, it is recommended to document the
rationale behind when checks are to be performed. It should be noted that
token retrieval can be rejected by the recipient when using the safe* method
family.

Examples

zNS/contracts/Registrar.sol:L257-L264

function _createDomain(

 uint256 domainId,

 address domainOwner,

 address minter,

 address controller

) internal {

 // Create the NFT and register the domain data

 _safeMint(domainOwner, domainId);

zNS/contracts/BasicController.sol:L71-L71

registrar.transferFrom(controller, owner, id);

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://github.com/zer0-os/ZNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 12/32

zNS/contracts/StakingController.sol:L140-L140

registrar.transferFrom(controller, recoveredBidder, id);

zAuction/contracts/zAuction.sol:L42-L42

nftcontract.transferFrom(msg.sender, bidder, tokenid);

5 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around
best practices or readability. Code maintainers should use their own
judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
fixed.

5.1 zNS - Domain bid might be approved by non owner
account Critical ✓ Fixed

Resolution

Addressed with zer0-os/zNS@ab7d62a by storing the domain request data
on-chain.

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 13/32

Description

The spec allows anyone to place a bid for a domain, while only parent domain
owners are allowed to approve a bid. Bid placement is actually enforced and
purely informational. In practice, approveDomainBid allows any parent domain
owner to approve bids (signatures) for any other domain even if they do not own
it. Once approved, anyone can call fulfillDomainBid to create a domain.

Examples

zNS/contracts/StakingController.sol:L95-L103

function approveDomainBid(

 uint256 parentId,

 string memory bidIPFSHash,

 bytes memory signature

) external authorizedOwner(parentId) {

 bytes32 hashOfSig = keccak256(abi.encode(signature));

 approvedBids[hashOfSig] = true;

 emit DomainBidApproved(bidIPFSHash);

}

Recommendation

Consider adding a validation check that allows only the parent domain owner to
approve bids on one of its domains. Reconsider the design of the system
introducing more on-chain guarantees for bids.

5.2 zAuction, zNS - Bids cannot be cancelled, never expire,
and the auction lifecycle is unclear Major ✓ Fixed

Resolution

Addressed with zer0-os/zNS@ab7d62a by refactoring the
StakingController to control the lifecycle of bids instead of handling this

off-chain.

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 14/32

Addressed with zer0-os/zAuction@ 135b2aa for zAuction by adding a
bid/saleOffer expiration for bids. The client also provided the following
statement:

5.6 added expireblock and startblock to zauction, expireblock to
zsale
Decided not to add a cancel function. Paying gas to cancel
isn’t ideal, and it can be used as a griefing function. though that’s
still possible to do by moving weth but differently

The stateless nature of auctions may make it hard to enforce bid/sale
expirations and it is not possible to cancel a bid/offer that should not be
valid anymore. The expiration reduces the risk of old offers being used as
they now automatically invalidate after time, however, it is still likely that
multiple valid offers may be present at the same time. As outlined in the
recommendation, one option would be to allow someone who signed a
commitment to explicitly cancel it in the contract. Another option would be
to create a stateful auction where the entity that puts up something for
“starts” an auction, creating an auction id, requiring bidders to bid on that
auction id. Once a bid is accepted the auction id is invalidated which
invalidates all bids that might be floating around.

UPDATE Fixed with zer0-os/zAuction@ 2f92aa1 for zAuction/zSale by allowing
the seller (zSale) to cancel their offer, and by allowing the bidder (zAuction)
to cancel bids (pot. more than one per auction) up to a certain price
threshold. Since auctionId can only be used once, all other bids for an
auction are automatically invalidated after a bid is accepted. Note that the
current version is using a unique number as an auction id. There can be
concurrent auctions that by chance or maliciously use the same auction id.
The first auction to pass will cancel the competing auction that was using
the same id. This fact can be used as a griefing vector to terminate running
auctions by reusing the other auctions id and self-accepting the bid. The
other auction cannot be fulfilled anymore.

Description

The lifecycle of a bid both for zAuction and zNS is not clear, and has many flaws.

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://github.com/zer0-os/zAuction/commit/2f92aa1c9cd0c53ec046340d35152460a5fe7dd0

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 15/32

zAuction - Consider the case where a bid is placed, then the underlying
asset in being transferred to a new owner. The new owner can now force to
sell the asset even though it’s might not be relevant anymore.

zAuction - Once a bid was accepted and the asset was transferred, all other
bids need to be invalidated automatically, otherwise and old bid might be
accepted even after the formal auction is over.

zAuction , zNS - There is no way for the bidder to cancel an old bid. That
might be useful in the event of a significant change in market trend, where
the old pricing is no longer relevant. Currently, in order to cancel a bid, the
bidder can either withdraw his ether balance from the zAuctionAccountant , or
disapprove WETH which requires an extra transaction that might be front-
runned by the seller.

Examples

zAuction/contracts/zAuction.sol:L35-L45

function acceptBid(bytes memory signature, uint256 rand, address bidder, uint25
 address recoveredbidder = recover(toEthSignedMessageHash(keccak256(abi.enco
 require(bidder == recoveredbidder, 'zAuction: incorrect bidder');

 require(!randUsed[rand], 'Random nonce already used');

 randUsed[rand] = true;

 IERC721 nftcontract = IERC721(nftaddress);

 accountant.Exchange(bidder, msg.sender, bid);

 nftcontract.transferFrom(msg.sender, bidder, tokenid);

 emit BidAccepted(bidder, msg.sender, bid, nftaddress, tokenid);

}

zNS/contracts/StakingController.sol:L120-L152

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 16/32

 function fulfillDomainBid(

 uint256 parentId,

 uint256 bidAmount,

 uint256 royaltyAmount,

 string memory bidIPFSHash,

 string memory name,

 string memory metadata,

 bytes memory signature,

 bool lockOnCreation,

 address recipient

) external {

 bytes32 recoveredBidHash = createBid(parentId, bidAmount, bidIPFSHash, name);
 address recoveredBidder = recover(recoveredBidHash, signature);

 require(recipient == recoveredBidder, "ZNS: bid info doesnt match/exist");

 bytes32 hashOfSig = keccak256(abi.encode(signature));

 require(approvedBids[hashOfSig] == true, "ZNS: has been fullfilled");

 infinity.safeTransferFrom(recoveredBidder, controller, bidAmount);

 uint256 id = registrar.registerDomain(parentId, name, controller, recoveredBi
 registrar.setDomainMetadataUri(id, metadata);

 registrar.setDomainRoyaltyAmount(id, royaltyAmount);

 registrar.transferFrom(controller, recoveredBidder, id);

 if (lockOnCreation) {

 registrar.lockDomainMetadataForOwner(id);
 }

 approvedBids[hashOfSig] = false;

 emit DomainBidFulfilled(

 metadata,

 name,

 recoveredBidder,
 id,

 parentId

);

}

Recommendation

Consider adding an expiration field to the message signed by the bidder both
for zAuction and zNS .
Consider adding auction control, creating an auctionId ,
and have users bid on specific auctions. By adding this id to the signed
message, all other bids are invalidated automatically and users would have to
place new bids for a new auction. Optionally allow users to cancel bids
explicitly.

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 17/32

5.3 zNS - Insufficient protection against replay attacks Major
✓ Fixed

Resolution

Addressed with zer0-os/zNS@ab7d62a by avoiding the use of digital
signatures and storing the domain request data on-chain.

Description

There is no dedicated data structure to prevent replay attacks on
StakingController . approvedBids mapping offers only partial mitigation, due to the

fact that after a domain bid is fulfilled, the only mechanism in place to prevent a
replay attack is the Registrar contract that might be replaced in the case where
StakingController is being re-deployed with a different Registrar instance.

Additionally, the digital signature used for domain bids does not identify the
buyer request uniquely enough. The bidder’s signature could be replayed in
future similar contracts that are deployed with a different registrar or in a
different network.

Examples

zNS/contracts/StakingController.sol:L176-L183

function createBid(

 uint256 parentId,

 uint256 bidAmount,

 string memory bidIPFSHash,

 string memory name

) public pure returns(bytes32) {

 return keccak256(abi.encode(parentId, bidAmount, bidIPFSHash, name));

}

Recommendation

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 18/32

Consider adding a dedicated mapping to store the a unique identifier of a bid,
as well as adding address(this) , block.chainId , registrar and nonce to the
message that is being signed by the bidder.

5.4 zNS - domain name collisions Major ✓ Fixed

Resolution

Addressed with zer0-os/ZNS@ ab7d62a by disallowing empty names for
domain registrations. The name validation in off-chain components (e.g.
subgraph components) has not been verified.

Description

Domain registration accepts an empty (zero-length) name. This may allow a
malicious entity to register two different NFT’s for the same visually
indinstinguishable text representation of a domain. Similar to this the domain
name is mapped to an NFT via a subgraph that connects parent names to the
new subdomain using a domain separation character (dot/slash/…). Someone
might be able to register a.b to cats.cool which might resolve to the same
domain as if someone registers cats.cool.a and then cats.cool.a.b .

Examples

0/cats/ = 0xfe

0/cats/<empty-string/ = 0xfe.keccak("")

zNS/contracts/Registrar.sol:L76-L96

https://github.com/zer0-os/ZNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 19/32

function registerDomain(

 uint256 parentId,

 string memory name,

 address domainOwner,

 address minter

) external override onlyController returns (uint256) {

 // Create the child domain under the parent domain

 uint256 labelHash = uint256(keccak256(bytes(name)));

 address controller = msg.sender;

 // Domain parents must exist

 require(_exists(parentId), "Zer0 Registrar: No parent");

 // Calculate the new domain's id and create it

 uint256 domainId =

 uint256(keccak256(abi.encodePacked(parentId, labelHash)));

 _createDomain(domainId, domainOwner, minter, controller);

 emit DomainCreated(domainId, name, labelHash, parentId, minter, controller);

 return domainId;

Recommendation

Disallow empty subdomain names. Disallow domain separators in names (in the
offchain component or smart contract).

5.5 zAuction, zNS - gas griefing by spamming offchain fake
bids Medium Acknowledged

Resolution

Addressed and acknowledged with changes from zer0-os/zAuction@
135b2aa . The client provided the following remark:

5.19 I have attempted to order the requires sensibly, putting the
least expensive first. Please advise if the ordering is optimal. gas
griefing will be mitigated in the dapp with off-client checks

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 20/32

Description

The execution status of both zAuction.acceptBid and
StakingController.fulfillDomainBid transactions depend on the bidder, as his

approval is needed, his signature is being validated, etc. However, these
transactions can be submitted by accounts that are different from the bidder
account, or for accounts that do not have the required funds/deposits available,
luring the account that has to perform the on-chain call into spending gas on a
transaction that is deemed to fail (gas griefing). E.g. posting high-value fake bids
for zAuction without having funds deposited or WETH approved.

Examples

zNS/contracts/StakingController.sol:L120-L152

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 21/32

 function fulfillDomainBid(

 uint256 parentId,

 uint256 bidAmount,

 uint256 royaltyAmount,

 string memory bidIPFSHash,

 string memory name,

 string memory metadata,

 bytes memory signature,

 bool lockOnCreation,

 address recipient

) external {

 bytes32 recoveredBidHash = createBid(parentId, bidAmount, bidIPFSHash, name);
 address recoveredBidder = recover(recoveredBidHash, signature);

 require(recipient == recoveredBidder, "ZNS: bid info doesnt match/exist");

 bytes32 hashOfSig = keccak256(abi.encode(signature));

 require(approvedBids[hashOfSig] == true, "ZNS: has been fullfilled");

 infinity.safeTransferFrom(recoveredBidder, controller, bidAmount);

 uint256 id = registrar.registerDomain(parentId, name, controller, recoveredBi
 registrar.setDomainMetadataUri(id, metadata);

 registrar.setDomainRoyaltyAmount(id, royaltyAmount);

 registrar.transferFrom(controller, recoveredBidder, id);

 if (lockOnCreation) {

 registrar.lockDomainMetadataForOwner(id);
 }

 approvedBids[hashOfSig] = false;

 emit DomainBidFulfilled(

 metadata,

 name,

 recoveredBidder,
 id,

 parentId

);

}

zAuction/contracts/zAuction.sol:L35-L44

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 22/32

function acceptBid(bytes memory signature, uint256 rand, address bidder, uint25
 address recoveredbidder = recover(toEthSignedMessageHash(keccak256(abi.enco
 require(bidder == recoveredbidder, 'zAuction: incorrect bidder');

 require(!randUsed[rand], 'Random nonce already used');

 randUsed[rand] = true;

 IERC721 nftcontract = IERC721(nftaddress);

 accountant.Exchange(bidder, msg.sender, bid);

 nftcontract.transferFrom(msg.sender, bidder, tokenid);

 emit BidAccepted(bidder, msg.sender, bid, nftaddress, tokenid);

}

Recommendation

Revert early for checks that depend on the bidder before performing gas-
intensive computations.

Consider adding a dry-run validation for off-chain components before
transaction submission.

5.6 zNS - anyone can front-run fulfillDomainBid to lock
the domain setting or set different metadata Medium ✓ Fixed

Resolution

Addressed with zer0-os/ZNS@ ab7d62a by restricting the method to only be
callable by the requester.

Description

Anyone observing a call to fulfillDomainBid can front-run this call for the original
bidder, provide different metadata/royalty amount, or lock the metadata, as
these parameters are not part of the bidder’s signature.
The impact is limited as
both metadata, royalty amount, and lock state can be changed by the domain
owner after creation.

Examples

https://github.com/zer0-os/ZNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 23/32

zNS/contracts/StakingController.sol:L120-L143

 function fulfillDomainBid(

 uint256 parentId,

 uint256 bidAmount,

 uint256 royaltyAmount,

 string memory bidIPFSHash,

 string memory name,

 string memory metadata,

 bytes memory signature,

 bool lockOnCreation,

 address recipient

) external {

 bytes32 recoveredBidHash = createBid(parentId, bidAmount, bidIPFSHash, name);
 address recoveredBidder = recover(recoveredBidHash, signature);

 require(recipient == recoveredBidder, "ZNS: bid info doesnt match/exist");

 bytes32 hashOfSig = keccak256(abi.encode(signature));

 require(approvedBids[hashOfSig] == true, "ZNS: has been fullfilled");

 infinity.safeTransferFrom(recoveredBidder, controller, bidAmount);

 uint256 id = registrar.registerDomain(parentId, name, controller, recoveredBi
 registrar.setDomainMetadataUri(id, metadata);

 registrar.setDomainRoyaltyAmount(id, royaltyAmount);

 registrar.transferFrom(controller, recoveredBidder, id);

 if (lockOnCreation) {

 registrar.lockDomainMetadataForOwner(id);
 }

Recommendation

Consider adding metadata , royaltyAmount , and lockOnCreation to the message
signed by the bidder if the parent should have some control over metadata and
lockstatus and restrict access to this function to msg.sender==recoveredbidder .

5.7 zNS- Using a digital signature as a hash preimage Medium
✓ Fixed

Resolution

Addressed with zer0-os/zNS@ab7d62a by avoiding the use of digital
signatures.

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 24/32

Description

Using the encoded signature (r,s,v) or the hash of the signature to prevent replay
or track if signatures have been seen/used is not recommended in general, as it
may introduce signature malleability issues, as two different signature params
(r,s,v) may be producable that validly sign the same data.

The impact for this codebase, however, is limited, due to the fact that
openzeppelins ECDSA wrapper library is used which checks for malleable ECDSA
signatures (high s value). We still decided to keep this as a medium issue to raise
awareness, that it is bad practice to rely on the hash of signatures instead of the
hash of the actual signed data for checks.

In another instance in zAuction, a global random nonce is used to prevent replay
attacks. This is suboptimal and instead, the hash of the signed data (including a
nonce) should be used.

Examples

zNS/contracts/StakingController.sol:L120-L152

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 25/32

 function fulfillDomainBid(

 uint256 parentId,

 uint256 bidAmount,

 uint256 royaltyAmount,

 string memory bidIPFSHash,

 string memory name,

 string memory metadata,

 bytes memory signature,

 bool lockOnCreation,

 address recipient

) external {

 bytes32 recoveredBidHash = createBid(parentId, bidAmount, bidIPFSHash, name);
 address recoveredBidder = recover(recoveredBidHash, signature);

 require(recipient == recoveredBidder, "ZNS: bid info doesnt match/exist");

 bytes32 hashOfSig = keccak256(abi.encode(signature));

 require(approvedBids[hashOfSig] == true, "ZNS: has been fullfilled");

 infinity.safeTransferFrom(recoveredBidder, controller, bidAmount);

 uint256 id = registrar.registerDomain(parentId, name, controller, recoveredBi
 registrar.setDomainMetadataUri(id, metadata);

 registrar.setDomainRoyaltyAmount(id, royaltyAmount);

 registrar.transferFrom(controller, recoveredBidder, id);

 if (lockOnCreation) {

 registrar.lockDomainMetadataForOwner(id);
 }

 approvedBids[hashOfSig] = false;

 emit DomainBidFulfilled(

 metadata,

 name,

 recoveredBidder,
 id,

 parentId

);

}

zAuction/contracts/zAuction.sol:L35-L39

function acceptBid(bytes memory signature, uint256 rand, address bidder, uint25
 address recoveredbidder = recover(toEthSignedMessageHash(keccak256(abi.enco
 require(bidder == recoveredbidder, 'zAuction: incorrect bidder');

 require(!randUsed[rand], 'Random nonce already used');

 randUsed[rand] = true;

Recommendation

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 26/32

Consider creating the bid identifier by hashing the concatenation of all bid
parameters instead. Ensure to add replay protection
https://github.com/ConsenSys/zer0-zns-audit-2021-05/issues/19. Always check
for the hash of the signed data instead of the hash of the encoded signature to
track whether a signature has been seen before.

Consider implementing Ethereum typed structured data hashing and signing
according to EIP-712.

5.8 zNS - Registrar skips __ERC721Pausable_init() Minor
✓ Fixed

Resolution

Addressed with zer0-os/ZNS@ ab7d62a

Description

The initialization function of registrar skips the chained initializer
__ERC721Pausable_init to initialize __ERC721_init("Zer0 Name Service", "ZNS") . This

basically skips the following initialization calls:

abstract contract ERC721PausableUpgradeable is Initializable, ERC721Upgradeable
 function __ERC721Pausable_init() internal initializer {

 __Context_init_unchained();

 __ERC165_init_unchained();

 __Pausable_init_unchained();

 __ERC721Pausable_init_unchained();

 }

Examples

zNS/contracts/Registrar.sol:L39-L45

https://github.com/ConsenSys/zer0-zns-audit-2021-05/issues/19
https://eips.ethereum.org/EIPS/eip-712
https://github.com/zer0-os/ZNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 27/32

function initialize() public initializer {

 __Ownable_init();

 __ERC721_init("Zer0 Name Service", "ZNS");

 // create the root domain

 _createDomain(0, msg.sender, msg.sender, address(0));

}

Recommendation

consider calling the missing initializers to register the interface for erc165 if
needed.

5.9 zNS - Registrar is ERC721PausableUpgradeable but
there is no way to actually pause it Minor ✓ Fixed

Resolution

Addressed with zer0-os/ZNS@ ab7d62a by exposing pausable functionality
to the contract owner.

Description

The registrar is ownable and pausable but the functionality to pause the
contract is not implemented.

zNS/contracts/Registrar.sol:L8-L12

contract Registrar is

 IRegistrar,

 OwnableUpgradeable,

 ERC721PausableUpgradeable

{

Recommendation

https://github.com/zer0-os/ZNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 28/32

Simplification is key. Remove the pausable functionality if the contract is not
meant to be paused or consider implementing an external pause() function
decorated onlyOwner .

5.10 zNS - Avoid no-ops Minor ✓ Fixed

Resolution

Addressed with zer0-os/ZNS@ ab7d62a .

Description

Code paths that are causing transactions to be ended with an ineffective
outcome or no-operation (no actual state changes) are not advisable, as they
consume more gas, hide misconfiguration or error cases (e.g. adding the same
controller multiple times), and may impact other processes that rely upon
transaction’s logs.

Examples

Reject adding an already existing controller, and removing non existing
controller.

zNS/contracts/Registrar.sol:L51-L67

https://github.com/zer0-os/ZNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 29/32

/**

 @notice Authorizes a controller to control the registrar

 @param controller The address of the controller

 */

function addController(address controller) external override onlyOwner {

 controllers[controller] = true;

 emit ControllerAdded(controller);

}

/**

 @notice Unauthorizes a controller to control the registrar
 @param controller The address of the controller

 */

function removeController(address controller) external override onlyOwner {

 controllers[controller] = false;

 emit ControllerRemoved(controller);

}

Recommendation

Consider reverting code paths that end up in ineffective outcomes (i.e. no-
operation) as early as possible.

Appendix 1 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more
clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via
ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or
team, and the Reports do not guarantee the security of any particular project.
This Report does not consider, and should not be interpreted as considering or
having any bearing on, the potential economics of a token, token sale or any
other product, service or other asset. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.
No Report provides any warranty or representation to any Third-Party in any
respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 30/32

business. No third party should rely on the Reports in any way, including for the
purpose of making any decisions to buy or sell any token, product, service or
other asset. Specifically, for the avoidance of doubt, this Report does not
constitute investment advice, is not intended to be relied upon as investment
advice, is not an endorsement of this project or team, and it is not a guarantee
as to the absolute security of the project. CD owes no duty to any Third-Party by
virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within
the scope of our review within this report. Any Solidity code itself presents
unique and unquantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not
extend to the compiler layer, or any other areas beyond specified code that
could present security risks. Cryptographic tokens are emergent technologies
and carry with them high levels of technical risk and uncertainty. In some
instances, we may perform penetration testing or infrastructure assessments
depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best practices
in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext
or other computer links, gain access to web sites operated by persons other
than ConsenSys and CD. Such hyperlinks are provided for your reference and
convenience only, and are the exclusive responsibility of such web sites' owners.
You agree that ConsenSys and CD are not responsible for the content or
operation of such Web sites, and that ConsenSys and CD shall have no liability
to you or any other person or entity for the use of third party Web sites. Except
as described below, a hyperlink from this web Site to another web site does not
imply or mean that ConsenSys and CD endorses the content on that Web site or
the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites
to which you link from the Reports. ConsenSys and CD assumes no

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 31/32

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit.

AUD I TS

FUZZ ING

SCR IBBLE

BLOG

TOOLS

RESEARCH

ABOUT

CONTACT

CAREERS

PR IVACY
POL ICY

Subscribe to Our Newsletter
Stay up-to-date on our latest offerings,
tools, and the world of blockchain
security.

Email*

liz.daldalian@gmail.com

→

responsibility for the use of third party software on the Web Site and shall have
no liability whatsoever to any person or entity for the accuracy or completeness
of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of
the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

CONTACT US

https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/privacy-policy/
https://consensys.net/diligence/contact/

7/22/22, 8:40 AM Zer0 - zNS | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zns/ 32/32

https://consensys.net/

