
7/22/22, 8:40 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 1/31

Zer0 - zBanc

Date May 2021

Lead Auditor David Oz Kashi

Co-auditors Martin Ortner

1 Executive Summary
This report is part of a series of reports presenting the results of our
engagement with zer0 to review zNS, zAuction, and zBanc, zDAO Token.

The review was conducted over four weeks, from 19 April 2021 to 21 May 2021.
A total of 2x4 person-weeks were spent.

1.1 Layout

It was requested to present the results for the four code-bases under review in
individual reports. Links to the individual reports can be found below.

The Executive Summary and Scope sections are shared amongst the individual
reports. They provide a general overview of the engagement and summarize
scope changes and insights into how time was spent during the audit. The
section Recommendations and Findings list the respective �indings for the
component under review.

The following reports were delivered:

zNS

AUDITS FUZZING SCRIBBLE ABOUT

https://consensys.net/diligence/audits/private/lkt3wuldda13yz/
https://consensys.net/diligence
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

7/22/22, 8:40 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 2/31

zAuction

zBanc

zDAO-Token

1.2 Assessment Log

In the �irst week, the assessment team focussed its work on the zNS and
zAuction systems. Details on the scope for the components was set by the client

and can be found in the next section. A walkthrough session for the systems in
scope was requested, to understand the fundamental design decisions of the
system as some details were not found in the speci�ication/documentation.
Initial security �indings were also shared with the client during this session. It
was agreed to deliver a preliminary report sharing details of the �indings during
the end-of-week sync-up. This sync-up is also used to set the focus/scope for
the next week.

In the second week, the assessment team focussed its work on zBanc a
modi�ication of the bancor protocol solidity contracts. The initial code revision
under audit (zBanc 48da0ac1eebbe31a74742f1ae4281b156f03a4bc) was updated half-way
into the week on Wednesday to zBanc (3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4).
Preliminary �indings were shared during a sync-up discussing the changing
codebase under review. Thursday morning the client reported that work on the
zDAO Token �inished and it was requested to put it in scope for this week as the

token is meant to be used soon. The assessment team agreed to have a brief
look at the codebase, reporting any obvious security issues at best effort until
the end-of-week sync-up meeting (1day). Due to the very limited left until the
weekly sync-up meeting, it was recommended to extend the review into next
week as. Finally it was agreed to update and deliver the preliminary report
sharing details of the �indings during the end-of-week sync-up. This sync-up is
also used to set the focus/scope for the next week.

In the third week, the assessment team continued working on zDAO Token on
Monday. We provided a heads-up that the snapshot functionality of zDAO Token
was not working the same day. On Tuesday focus shifted towards reviewing
changes to zAuction (135b2aaddcfc70775fd1916518c2cc05106621ec , remarks). On the
same day the client provided an updated review commit for zDAO Token (
81946d451e8a9962b0c0d6fc8222313ec115cd53) addressing the issue we reported on

https://consensys.net/diligence/audits/private/tzhurqdzo2akk1/
https://consensys.net/diligence/audits/private/c7xp44alj3b1q8/
https://consensys.net/diligence/audits/private/s58r1p3v1lapm5/
https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4bc
https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zDAO-Token/commit/81946d451e8a9962b0c0d6fc8222313ec115cd53

7/22/22, 8:40 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 3/31

Monday. The client provided an updated review commit for zNS (
ab7d62a7b8d51b04abea895e241245674a640fc1) on Wednesday and zNS (
bc5fea725f84ae4025f5fb1a9f03fb7e9926859a) on Thursday.

As can be inferred from this timeline various parts of the codebases were
undergoing changes while the review was performed which introduces
ine�iciencies and may have an impact on the review quality (reviewing frozen
codebase vs. moving target). As discussed with the client we highly recommend
to plan ahead for security activities, create a dedicated role that coordinates
security on the team, and optimize the software development lifecycle to
explicitly include security activities and key milestones, ensuring that code is
frozen, quality tested, and security review readiness is established ahead of any
security activities. It should also be noted that code-style and quality varies a lot
for the different repositories under review which might suggest that there is a
need to better anchor secure development practices in the development
lifecycle.

After a one-week hiatus the assessment team continued reviewing the changes
for zAuction and zBanc . The �indings were initially provided with one combined
report and per client request split into four individual reports.

2 Scope
Our review focused on the following components and code revisions:

2.1 Objectives

Together with the zer0 team, we identi�ied the following priorities for our review:

�. Ensure that the system is implemented consistently with the intended
functionality, and without unintended edge cases.

�. Identify known vulnerabilities particular to smart contract systems, as
outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classi�ication Registry.

2.2 Week - 1

https://github.com/zer0-os/zNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1
https://github.com/zer0-os/zNS/commit/bc5fea725f84ae4025f5fb1a9f03fb7e9926859a
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

7/22/22, 8:40 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 4/31

zNS (b05e503ea1ee87dbe62b1d58426aaa518068e395) (scope doc) (1, 2)

zAuction (50d3b6ce6d7ee00e7181d5b2a9a2eedcdd3fdb72) (scope doc) (1, 2)

Original Scope overview document

2.3 Week - 2

zBanc (48da0ac1eebbe31a74742f1ae4281b156f03a4bc) initial commit under review

zBanc (3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4) updated commit under review
(mid of week) (scope doc) (1)

Files in Scope:
contracts/converter/types/dynamic-liquid-token/DynamicLiquidTokenConverter

contracts/converter/types/dynamic-liquid-
token/DynamicLiquidTokenConverterFactory

contracts/converter/ConverterUpgrader.sol (added handling new
converterType 3)

zDAO token provided on thursday (scope doc) (1)
Files in Scope:

ZeroDAOToken.sol

MerkleTokenAirdrop.sol

MerkleTokenVesting.sol

MerkleDistributor.sol

TokenVesting.sol

And any relevant Interfaces / base contracts

The zDAO review in week two was performed best effort from Thursday to Friday
attempting to surface any obvious issues until the end-of-week sync-up
meeting.

2.4 Week - 3

Continuing on zDAO token (1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6)

Updated review commit for zAuction (135b2aaddcfc70775fd1916518c2cc05106621ec ,
1) on Monday

Updated review commit for zDAO Token (
81946d451e8a9962b0c0d6fc8222313ec115cd53) on Tuesday

https://github.com/zer0-os/ZNS/commit/b05e503ea1ee87dbe62b1d58426aaa518068e395
https://docs.google.com/document/d/1BCpezFQloL3vn6x9KMbimbdDk9O-E9qyKR9465VZzn8/edit
https://consensys.net/diligence/audits/2021/05/zer0-zbanc/doc/ZNS%20Audit%20Checklist.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zbanc/doc/Zer0%20ZNS%20-%20Audit%20Checkpoint.pdf
https://github.com/zer0-os/zAuction/commit/50d3b6ce6d7ee00e7181d5b2a9a2eedcdd3fdb72
https://docs.google.com/document/d/1PQLhvhFd-5OCVxZO5vQlx2zmIPGnxFRIJVIItO18YEE
https://consensys.net/diligence/audits/2021/05/zer0-zbanc/doc/zAuction%20audit%20prep.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zbanc/doc/zAuction%20spec.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zbanc/doc/Zer0%20Audit.pdf
https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4bc
https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4
https://docs.google.com/document/d/1NIq6XwEByhliWjDlk032JQspkLoNzJTMtJrBb2jTUJc/edit
https://consensys.net/diligence/audits/2021/05/zer0-zbanc/doc/zBanc%20audit%20prep.pdf
https://github.com/zer0-os/zDAO-Token/commit/1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6
https://docs.google.com/document/d/1DocRfk_rv7aTi2U_PyYi6HJR2BZJ_-eRjqJgFKoP5yE/edit#
https://consensys.net/diligence/audits/2021/05/zer0-zbanc/doc/Zer0%20DAO%20Token.pdf
https://github.com/zer0-os/zDAO-Token/commit/1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zDAO-Token/commit/81946d451e8a9962b0c0d6fc8222313ec115cd53

7/22/22, 8:40 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 5/31

Updated review commit for zNS (ab7d62a7b8d51b04abea895e241245674a640fc1) on
Wednesday

Updated review commit for zNS (bc5fea725f84ae4025f5fb1a9f03fb7e9926859a) on
Thursday

2.5 Hiatus - 1 Week

The assessment continues for a �inal week after a one-week long hiatus.

2.6 Week - 4

Updated review commit for zAuction (2f92aa1c9cd0c53ec046340d35152460a5fe7dd0 ,
1)

Updated review commit for zAuction addressing our remarks

Updated review commit for zBanc (ff3d91390099a4f729fe50c846485589de4f8173 , 1)

3 System Overview
This section describes the top-level/deployable contracts, their inheritance
structure and interfaces, actors, permissions and important contract
interactions of the initial system under review. This section does not take any
fundamental changes into account that were introduced during or after the
review was conducted.

Contracts are depicted as boxes. Public reachable interface methods are
outlined as rows in the box. The 🔍 icon indicates that a method is declared as
non-state-changing (view/pure) while other methods may change state. A yellow
dashed row at the top of the contract shows inherited contracts. A green
dashed row at the top of the contract indicates that that contract is used in a
usingFor declaration. Modi�iers used as ACL are connected as yellow bubbles in
front of methods.

https://github.com/zer0-os/zDAO-Token/commit/ab7d62a7b8d51b04abea895e241245674a640fc1
https://github.com/zer0-os/zDAO-Token/commit/bc5fea725f84ae4025f5fb1a9f03fb7e9926859a
https://github.com/zer0-os/zAuction/commit/2f92aa1c9cd0c53ec046340d35152460a5fe7dd0
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zAuction/commit/8ff0eab02e5c23bb513d90e3ff1ba8fa04f81b7a
https://github.com/zer0-os/zBanc/commit/ff3d91390099a4f729fe50c846485589de4f8173
https://docs.google.com/document/d/10hAa4KllGX-c6i7n_cfPcrTBxWD3ehyXaHAZ9G53ItM/edit

7/22/22, 8:40 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 6/31

DynamicLiquidTokenConverter
LiquidTokenConverter

__constr__

🔍 converterType

🔍 isActive

setMarketCapThreshold

setMinimumWeight

setStepWeight

setLastWeightAdjustmentMarketC

reduceWeight

🔍 getMarketCap

LiquidTokenConverter

ownerOnlyinactive

ownerOnlyinactive

ownerOnlyinactive

ownerOnlyinactive

validReserve ownerOnlyprotected

LiquidTokenConverter
ConverterBase

__constr__

🔍 converterType

acceptAnchorOwnership

addReserve

🔍 targetAmountAndFee

ConverterBase

ownerOnly

ownerOnly

ConverterBase
IConverter

TokenHandler

TokenHolder

ContractRegistryClient

ReentrancyGuard

SafeMath

🔍 converterType

🔍 targetAmountAndFee

💰 __constr__

withdrawETH

🔍 isV28OrHigher

setConversionWhitelist

🔍 isActive

transferAnchorOwnership

acceptAnchorOwnership

setConversionFee

withdrawTokens

upgrade

🔍 reserveTokenCount

addReserve

🔍 reserveWeight

🔍 reserveBalance

🔍 hasETHReserve

💰 convert

🔍 token

transferTokenOwnership

acceptTokenOwnership

🔍 connectors

🔍 connectorTokens

🔍 connectorTokenCount

🔍 getConnectorBalance

🔍 getReturn

protected ownerOnlyvalidReserve

ownerOnlynotThis

ownerOnlyonly

ownerOnly

ownerOnly

protected ownerOnly

ownerOnly

ownerOnly inactivevalidAddressnotThis validReserveWeight

validReserve

validReserve

protected only

ownerOnly

ownerOnly

TokenHolder
ITokenHolder

TokenHandler

Owned

Utils

withdrawTokens
ownerOnlyvalidAddressnotThis

Owned
IOwned

__constr__

transferOwnership

acceptOwnership

ownerOnly

ContractRegistryClient
Owned

Utils

updateRegistry

restoreRegistry

restrictRegistryUpdate

ownerOnly

ownerOnly

DynamicLiquidTokenConverterFactory
ITypedConverterFactory

🔍 converterType

createConverter

DynamicConverterUpgrader
IConverterUpgrader

ContractRegistryClient

__constr__

upgrade

upgrade

upgradeOld

ContractRegistryClient

ContractRegistryClient
Owned

Utils

updateRegistry

restoreRegistry

restrictRegistryUpdate

ownerOnly

ownerOnly

fallback
DynamicContractRegistry
IContractRegistry

Owned

Utils

🔍 itemCount

🔍 dcrItemCount

🔍 addressOf

registerAddress

setContractRegistry

unregisterAddress

ownerOnlyvalidAddress

ownerOnly

ownerOnly

ContractRegistry
IContractRegistry

Owned

Utils

🔍 itemCount

🔍 addressOf

registerAddress

unregisterAddress

🔍 getAddress

ownerOnlyvalidAddress

ownerOnly

zBanc

zBanc is a fork from the bancor-protocol adding a new type of liquid token that
allows an owner to change the reserve weights at speci�ic milestones to pay out
an amount of the tokens while the contract is active. Note that withdrawETH can
only be called by the owner if the contract is inactive or upgrading. The same is
true for withdrawTokens for reserve tokens. For this, a new converter type 3 -
DynamicLiquidTokenConverter was created, extending the existing LiquidTokenConverter .

The new converter requires a custom migration path for upgrades which is
implemented in DynamicConverterUpgrader and registered in a shadow-registry
DynamicContractRegistry that allows to override any Bancor registry settings and

falls back to retrieving the data from the linked registry otherwise. This gives
signi�icant control to whoever is managing the registry.

4 Recommendations

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/img/zero_zbanc.svg

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 7/31

4.1 zBanc - Potential gas optimizations

Description

DynamicLiquidTokenConverter.reduceWeight

�. Calling reserveBalance to fetch the reserve balance for a given reserveToken
might be redundant, as the value has already been fetched, and resides in
the reserve local variable.

�. Function visibility can be changed to external instead of public .

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L130-L150

 function reduceWeight(IERC20Token _reserveToken)
 public
 validReserve(_reserveToken)
 ownerOnly
 {
 _protected();
 uint256 currentMarketCap = getMarketCap(_reserveToken);
 require(currentMarketCap > (lastWeightAdjustmentMarketCap.add(marketCap

 Reserve storage reserve = reserves[_reserveToken];
 uint256 newWeight = uint256(reserve.weight).sub(stepWeight);
 uint32 oldWeight = reserve.weight;
 require(newWeight >= minimumWeight, "ERR_INVALID_RESERVE_WEIGHT");

 uint256 percentage = uint256(PPM_RESOLUTION).sub(newWeight.mul(PPM_RESO

 uint32 weight = uint32(newWeight);
 reserve.weight = weight;
 reserveRatio = weight;

 uint256 balance = reserveBalance(_reserveToken).mul(percentage).div(PPM

ConverterUpgrader.upgradeOld - Redundant casting of _converter .

zBanc/solidity/contracts/converter/ConverterUpgrader.sol:L96-L99

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 8/31

function upgradeOld(DynamicLiquidTokenConverter _converter, bytes32 _version) p
 _version;
 DynamicLiquidTokenConverter converter = DynamicLiquidTokenConverter(_conver
 address prevOwner = converter.owner();

4.2 Where possible, a specific contract type should be used
rather than address Acknowledged

Description

Consider using the best type available in the function arguments and
declarations instead of accepting address and later casting it to the correct type.

Examples

This is only one of many examples.

zAuction/contracts/zAuction.sol:L22-L26

function init(address accountantaddress) external {
 require(!initialized);
 initialized = true;
 accountant = zAuctionAccountant(accountantaddress);
}

zAuction/contracts/zAuction.sol:L52-L54

IERC721 nftcontract = IERC721(nftaddress);
weth.transferFrom(bidder, msg.sender, bid);
nftcontract.transferFrom(msg.sender, bidder, tokenid);

zAuction/contracts/zAuction.sol:L40-L42

IERC721 nftcontract = IERC721(nftaddress);
accountant.Exchange(bidder, msg.sender, bid);
nftcontract.transferFrom(msg.sender, bidder, tokenid);

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 9/31

zAuction/contracts/zAuctionAccountant.sol:L60-L63

function SetZauction(address zauctionaddress) external onlyAdmin{
 zauction = zauctionaddress;
 emit ZauctionSet(zauctionaddress);
}

5 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around
best practices or readability. Code maintainers should use their own
judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
�ixed.

5.1 zBanc - DynamicLiquidTokenConverter ineffective
reentrancy protection Major ✓ Fixed

Resolution

Fixed with zer0-os/zBanc@ ff3d913 by following the recommendation.

Description

reduceWeight calls _protected() in an attempt to protect from reentrant calls but
this check is insu�icient as it will only check for the locked statevar but never set

https://github.com/zer0-os/zBanc/commit/ff3d91390099a4f729fe50c846485589de4f8173

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 10/31

it. A potential for direct reentrancy might be present when an erc-777 token is
used as reserve.

It is assumed that the developer actually wanted to use the protected modi�ier
that sets the lock before continuing with the method.

Examples

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L123-L128

function reduceWeight(IERC20Token _reserveToken)
 public
 validReserve(_reserveToken)
 ownerOnly
{
 _protected();

contract ReentrancyGuard {
 // true while protected code is being executed, false otherwise
 bool private locked = false;

 /**
 * @dev ensures instantiation only by sub-contracts
 */
 constructor() internal {}

 // protects a function against reentrancy attacks
 modifier protected() {
 _protected();
 locked = true;
 _;
 locked = false;
 }

 // error message binary size optimization
 function _protected() internal view {
 require(!locked, "ERR_REENTRANCY");
 }
}

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 11/31

Recommendation

To mitigate potential attack vectors from reentrant calls remove the call to
_protected() and decorate the function with protected instead. This will properly

set the lock before executing the function body rejecting reentrant calls.

5.2 zBanc - DynamicLiquidTokenConverter input validation
Medium ✓ Fixed

Resolution

�ixed with zer0-os/zBanc@ ff3d913 by checking that the provided values are
at least 0% < p <= 100%.

Description

Check that the value in PPM is within expected bounds before updating system
settings that may lead to functionality not working correctly. For example,
setting out-of-bounds values for stepWeight or setMinimumWeight may make calls to
reduceWeight fail. These values are usually set in the beginning of the lifecycle of

the contract and miscon�iguration may stay unnoticed until trying to reduce the
weights. The settings can be �ixed, however, by setting the contract inactive and
updating it with valid settings. Setting the contract to inactive may temporarily
interrupt the normal operation of the contract which may be unfavorable.

Examples

Both functions allow the full uint32 range to be used, which, interpreted as PPM

would range from 0% to 4.294,967295%

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L75-L84

https://github.com/zer0-os/zBanc/commit/ff3d91390099a4f729fe50c846485589de4f8173

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 12/31

function setMinimumWeight(uint32 _minimumWeight)
 public
 ownerOnly
 inactive
{
 //require(_minimumWeight > 0, "Min weight 0");
 //_validReserveWeight(_minimumWeight);
 minimumWeight = _minimumWeight;
 emit MinimumWeightUpdated(_minimumWeight);
}

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L92-L101

function setStepWeight(uint32 _stepWeight)
 public
 ownerOnly
 inactive
{
 //require(_stepWeight > 0, "Step weight 0");
 //_validReserveWeight(_stepWeight);
 stepWeight = _stepWeight;
 emit StepWeightUpdated(_stepWeight);
}

Recommendation

Reintroduce the checks for _validReserveWeight to check that a percent value
denoted in PPM is within valid bounds _weight > 0 && _weight <= PPM_RESOLUTION .
There is no need to separately check for the value to be >0 as this is already
ensured by _validReserveWeight .

Note that there is still room for miscon�iguration (step size too high, min-step
too high), however, this would at least allow to catch obviously wrong and often
erroneously passed parameters early.

5.3 zBanc - DynamicLiquidTokenConverter introduces
breaking changes to the underlying bancorprotocol base
Medium ✓ Fixed

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 13/31

Resolution

Addressed with zer0-os/zBanc@ ff3d913 by removing the modi�ications in
favor of surgical and more simple changes, keeping the factory and
upgrade components as close as possible to the forked bancor contracts.

Additionally, the client provided the following statement:

5.14 Removed excess functionality from factory and restored the
bancor factory pattern.

Description

Introducing major changes to the complex underlying smart contract system
that zBanc was forked from(bancorprotocol) may result in unnecessary
complexity to be added. Complexity usually increases the attack surface and
potentially introduces software misbehavior. Therefore, it is recommended to
focus on reducing the changes to the base system as much as possible and
comply with the interfaces and processes of the system instead of introducing
diverging behavior.

For example, DynamicLiquidTokenConverterFactory does not implement the
ITypedConverterFactory while other converters do. Furthermore, this interface and

the behavior may be expected to only perform certain tasks e.g. when called
during an upgrade process. Not adhering to the base systems expectations may
result in parts of the system failing to function for the new convertertype.
Changes introduced to accommodate the custom behavior/interfaces may
result in parts of the system failing to operate with existing converters. This risk
is best to be avoided.

In the case of DynamicLiquidTokenConverterFactory the interface is imported but not
implemented at all (unused import). The reason for this is likely because the
function createConverter in DynamicLiquidTokenConverterFactory does not adhere to the
bancor-provided interface anymore as it is doing way more than “just” creating

https://github.com/zer0-os/zBanc/commit/ff3d91390099a4f729fe50c846485589de4f8173

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 14/31

and returning a new converter. This can create problems when trying to
upgrade the converter as the upgraded expected the shared interface to be
exposed unless the update mechanisms are modi�ied as well.

In general, the factories createConverter method appears to perform more tasks
than comparable type factories. It is questionable if this is needed but may be
required by the design of the system. We would, however, highly recommend to
not diverge from how other converters are instantiated unless it is required to
provide additional security guarantees (i.e. the token was instantiated by the
factory and is therefore trusted).

The ConverterUpgrader changed in a way that it now can only work with the
DynamicLiquidTokenconverter instead of the more generalized IConverter interface.

This probably breaks the update for all other converter types in the system.

The severity is estimated to be medium based on the fact that the development
team seems to be aware of the breaking changes but the direction of the design
of the system was not yet decided.

Examples

unused import

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverterFactory.sol:L6-L6

import "../../interfaces/ITypedConverterFactory.sol";

converterType should be external as it is not called from within the same or
inherited contracts

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverterFactory.sol:L144-L146

function converterType() public pure returns (uint16) {
 return 3;
}

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 15/31

createToken can be external and is actually creating a token and converter
that is using that token (the converter is not returned)(consider renaming to
createTokenAndConverter)

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverterFactory.sol:L54-L74

{
 DSToken token = new DSToken(_name, _symbol, _decimals);

 token.issue(msg.sender, _initialSupply);

 emit NewToken(token);

 createConverter(
 token,
 _reserveToken,
 _reserveWeight,
 _reserveBalance,
 _registry,
 _maxConversionFee,
 _minimumWeight,
 _stepWeight,
 _marketCapThreshold
);

 return token;
}

the upgrade interface changed and now requires the converter to be a
DynamicLiquidTokenConverter . Other converters may potentially fail to upgrade

unless they implement the called interfaces.

zBanc/solidity/contracts/converter/ConverterUpgrader.sol:L96-L122

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 16/31

 function upgradeOld(DynamicLiquidTokenConverter _converter, bytes32 _versio
 _version;
 DynamicLiquidTokenConverter converter = DynamicLiquidTokenConverter(_co
 address prevOwner = converter.owner();
 acceptConverterOwnership(converter);
 DynamicLiquidTokenConverter newConverter = createConverter(converter);

 copyReserves(converter, newConverter);
 copyConversionFee(converter, newConverter);
 transferReserveBalances(converter, newConverter);
 IConverterAnchor anchor = converter.token();

 // get the activation status before it's being invalidated
 bool activate = isV28OrHigherConverter(converter) && converter.isActive

 if (anchor.owner() == address(converter)) {
 converter.transferTokenOwnership(address(newConverter));
 newConverter.acceptAnchorOwnership();
 }

 handleTypeSpecificData(converter, newConverter, activate);
 converter.transferOwnership(prevOwner);

 newConverter.transferOwnership(prevOwner);

 emit ConverterUpgrade(address(converter), address(newConverter));
 }

solidity/contracts/converter/ConverterUpgrader.sol:L95-L101

function upgradeOld(
 IConverter _converter,
 bytes32 /* _version */
) public {
 // the upgrader doesn't require the version for older converters
 upgrade(_converter, 0);
}

Recommendation

It is a fundamental design decision to either follow the bancorsystems converter
API or diverge into a more customized system with a different design,

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 17/31

functionality, or even security assumptions. From the current documentation, it
is unclear which way the development team wants to go.

However, we highly recommend re-evaluating whether the newly introduced
type and components should comply with the bancor API (recommended; avoid
unnecessary changes to the underlying system,) instead of changing the API for
the new components. Decide if the new factory should adhere to the usually
commonly shared ITypedConverterFactory (recommended) and if not, remove the
import and provide a new custom shared interface. It is highly recommended to
comply and use the bancor systems extensibility mechanisms as intended,
keeping the previously audited bancor code in-tact and voiding unnecessary re-
assessments of the security impact of changes.

5.4 zBanc - DynamicLiquidTokenConverter isActive
should only be returned if converter is fully configured and
converter parameters should only be updateable while
converter is inactive Medium ✓ Fixed

Resolution

Addressed with zer0-os/zBanc@ ff3d913 by removing the custom ACL
modi�ier falling back to checking whether the contract is con�igured (
isActive , inactive modi�iers). When a new contract is deployed it will be

inactive until the main vars are set by the owner (upgrade contract). The
upgrade path is now aligned with how the LiquidityPoolV2Converter performs
upgrades.

Additionally, the client provided the following statement:

5.13 - upgrade path resolved - inactive modi�ier back on the
setters, and upgrade path now mirrors lpv2 path. An important
note here is that lastWeightAdjustmentMarketCap setting isn’t
included in the inActive() override, since it has a valid state of 0.

https://github.com/zer0-os/zBanc/commit/ff3d91390099a4f729fe50c846485589de4f8173

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 18/31

So it must be set before the others settings, or it will revert as
inactive

Description

By default, a converter is active once the anchor ownership was transferred.
This is true for converters that do not require to be properly set up with
additional parameters before they can be used.

zBanc/solidity/contracts/converter/ConverterBase.sol:L272-L279

/**
 * @dev returns true if the converter is active, false otherwise
 *
 * @return true if the converter is active, false otherwise
*/
function isActive() public view virtual override returns (bool) {
 return anchor.owner() == address(this);
}

For a simple converter, this might be su�icient. If a converter requires additional
setup steps (e.g. setting certain internal variables, an oracle, limits, etc.) it
should return inactive until the setup completes. This is to avoid that users are
interacting with (or even pot. frontrunning) a partially con�igured converter as
this may have unexpected outcomes.

For example, the LiquidityPoolV2Converter overrides the isActive method to require
additional variables be set (oracle) to actually be in active state.

zBanc/solidity/contracts/converter/types/liquidity-pool-
v2/LiquidityPoolV2Converter.sol:L79-L85

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 19/31

 * @dev returns true if the converter is active, false otherwise
 *
 * @return true if the converter is active, false otherwise
*/
function isActive() public view override returns (bool) {
 return super.isActive() && address(priceOracle) != address(0);
}

Additionally, settings can only be updated while the contract is inactive which
will be the case during an upgrade. This ensures that the owner cannot adjust
settings at will for an active contract.

zBanc/solidity/contracts/converter/types/liquidity-pool-
v2/LiquidityPoolV2Converter.sol:L97-L109

function activate(
 IERC20Token _primaryReserveToken,
 IChainlinkPriceOracle _primaryReserveOracle,
 IChainlinkPriceOracle _secondaryReserveOracle)
 public
 inactive
 ownerOnly
 validReserve(_primaryReserveToken)
 notThis(address(_primaryReserveOracle))
 notThis(address(_secondaryReserveOracle))
 validAddress(address(_primaryReserveOracle))
 validAddress(address(_secondaryReserveOracle))
{

The DynamicLiquidTokenConverter is following a different approach. It inherits the
default isActive which sets the contract active right after anchor ownership is
transferred. This kind of breaks the upgrade process for
DynamicLiquidTokenConverter as settings cannot be updated while the contract is

active (as anchor ownership might be transferred before updating values). To
unbreak this behavior a new authentication modi�ier was added, that allows
updates for the upgrade contradict while the contract is active. Now this is a
behavior that should be avoided as settings should be predictable while a
contract is active. Instead it would make more sense initially set all the custom
settings of the converter to zero (uninitialized) and require them to be set and

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 20/31

only the return the contract as active. The behavior basically mirrors the
upgrade process of LiquidityPoolV2Converter .

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L44-L50

 modifier ifActiveOnlyUpgrader(){
 if(isActive()){
 require(owner == addressOf(CONVERTER_UPGRADER), "ERR_ACTIVE_NOTUPGRADER
 }
 _;
 }

Pre initialized variables should be avoided. The marketcap threshold can only be
set by the calling entity as it may be very different depending on the type of
reserve (eth, token).

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L17-L20

uint32 public minimumWeight = 30000;
uint32 public stepWeight = 10000;
uint256 public marketCapThreshold = 10000 ether;
uint256 public lastWeightAdjustmentMarketCap = 0;

Here’s one of the setter functions that can be called while the contract is active
(only by the upgrader contract but changing the ACL commonly followed with
other converters).

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L67-L74

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 21/31

function setMarketCapThreshold(uint256 _marketCapThreshold)
 public
 ownerOnly
 ifActiveOnlyUpgrader
{
 marketCapThreshold = _marketCapThreshold;
 emit MarketCapThresholdUpdated(_marketCapThreshold);
}

Recommendation

Align the upgrade process as much as possible to how LiquidityPoolV2Converter

performs it. Comply with the bancor API.

override isActive and require the contracts main variables to be set.

do not pre initialize the contracts settings to “some” values. Require them to
be set by the caller (and perform input validation)

mirror the upgrade process of LiquidityPoolV2Converter and instead of activate

call the setter functions that set the variables. After setting the last var and
anchor ownership been transferred, the contract should return active.

5.5 zBanc - DynamicLiquidTokenConverter frontrunner can
grief owner when calling reduceWeight Medium Acknowledged

Resolution

The client acknowledged this issue by providing the following statement:

5.12 - admin by a DAO will mitigate the owner risks here

Description

The owner of the converter is allowed to reduce the converters weights once
the marketcap surpasses a con�igured threshhold. The thresshold is con�igured

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 22/31

on �irst deployment. The marketcap at the beginning of the call is calculated as
reserveBalance / reserve.weight and stored as lastWeightAdjustmentMarketCap after

reducing the weight.

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L130-L138

 function reduceWeight(IERC20Token _reserveToken)
 public
 validReserve(_reserveToken)
 ownerOnly
 {
 _protected();
 uint256 currentMarketCap = getMarketCap(_reserveToken);
 require(currentMarketCap > (lastWeightAdjustmentMarketCap.add(marketCap

The reserveBalance can be manipulated by buying (adding reserve token) or
selling liquidity tokens (removing reserve token). The success of a call to
reduceWeight is highly dependant on the marketcap. A malicious actor may,

therefore, attempt to grief calls made by the owner by sandwiching them with
buy and sell calls in an attempt to (a) raise the barrier for the next valid payout

marketcap or (b) temporarily lower the marketcap if they are a major token
holder in an attempt to fail the reduceWeights call.

In both cases the griefer may incur some losses due to conversion errors,
bancor fees if they are set, and gas spent. It is, therefore, unlikely that a third
party may spend funds on these kinds of activities. However, the owner as a
potential major liquid token holder may use this to their own bene�it by
arti�icially lowering the marketcap to the absolute minimum (old+threshold) by
selling liquidity and buying it back right after reducing weights.

5.6 zBanc - outdated fork Medium Acknowledged

Description

According to the client the system was forked off bancor v0.6.18 (Oct 2020). The
current version 0.6.x is v0.6.36 (Apr 2021).

https://github.com/bancorprotocol/contracts-solidity/releases/tag/v0.6.18
https://github.com/bancorprotocol/contracts-solidity/releases/tag/v0.6.36

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 23/31

Recommendation

It is recommended to check if relevant security �ixes were released after v0.6.18
and it should be considered to rebase with the current stable release.

5.7 zBanc - inconsistent DynamicContractRegistry, admin
risks Medium ✓ Fixed

Resolution

The client acknowledged the admin risk and addressed the itemCount

concerns by exposing another method that only returns the overridden
entries. The following statement was provided:

5.10 - keeping this pattern which matches the bancor pattern, and
noting the DCR should be owned by a DAO, which is our plan.
solved itemCount issue - Added dcrItemCount and made
itemCount call the bancor registry’s itemCount, so unpredictable
behavior due to the count should be eliminated.

Description

DynamicContractRegistry is a wrapper registry that allows the zBanc to use the
custom upgrader contract while still providing access to the normal bancor
registry.

For this to work, the registry owner can add or override any registry setting.
Settings that don’t exist in this contract are attempted to be retrieved from an
underlying registry (contractRegistry).

zBanc/solidity/contracts/utility/DynamicContractRegistry.sol:L66-L70

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 24/31

function registerAddress(bytes32 _contractName, address _contractAddress)
 public
 ownerOnly
 validAddress(_contractAddress)
{

If the item does not exist in the registry, the request is forwarded to the
underlying registry.

zBanc/solidity/contracts/utility/DynamicContractRegistry.sol:L52-L58

function addressOf(bytes32 _contractName) public view override returns (address
 if(items[_contractName].contractAddress != address(0)){
 return items[_contractName].contractAddress;
 }else{
 return contractRegistry.addressOf(_contractName);
 }
}

According to the documentation this registry is owned by zer0 admins and this
means users have to trust zer0 admins to play fair.

To handle this, we deploy our own ConverterUpgrader and
ContractRegistry owned by zer0 admins who can register new
addresses

The owner of the registry (zer0 admins) can change the underlying registry
contract at will. The owner can also add new or override any settings that
already exist in the underlying registry. This may for example allow a malicious
owner to change the upgrader contract in an attempt to potentially steal funds
from a token converter or upgrade to a new malicious contract. The owner can
also front-run registry calls changing registry settings and thus in�luencing the
outcome. Such an event will not go unnoticed as events are emitted.

It should also be noted that itemCount will return only the number of items in the
wrapper registry but not the number of items in the underlying registry. This
may have an unpredictable effect on components consuming this information.

https://docs.google.com/document/d/1NIq6XwEByhliWjDlk032JQspkLoNzJTMtJrBb2jTUJc/edit

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 25/31

zBanc/solidity/contracts/utility/DynamicContractRegistry.sol:L36-L43

/**
 * @dev returns the number of items in the registry
 *
 * @return number of items
*/
function itemCount() public view returns (uint256) {
 return contractNames.length;
}

Recommendation

Require the owner/zer0 admins to be a DAO or multisig and enforce 2-step
(notify->wait->upgrade) registry updates (e.g. by requiring voting or timelocks in
the admin contract). Provide transparency about who is the owner of the
registry as this may not be clear for everyone. Evaluate the impact of itemCount

only returning the number of settings in the wrapper not taking into account
entries in the subcontract (including pot. overlaps).

5.8 zBanc - DynamicLiquidTokenConverter consider using
PPM_RESOLUTION instead of hardcoding integer literals Minor
✓ Fixed

Resolution

This issue was present in the initial commit under review (zer0-os/zBanc@
48da0ac) but has since been addressed with zer0-os/zBanc@ 3d6943e .

Description

getMarketCap calculates the reserve’s market capitalization as
reserveBalance * 1e6 / weight where 1e6 should be expressed as the constant
PPM_RESOLUTION .

Examples

https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4bc
https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 26/31

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L157-L164

function getMarketCap(IERC20Token _reserveToken)
 public
 view
 returns(uint256)
{
 Reserve storage reserve = reserves[_reserveToken];
 return reserveBalance(_reserveToken).mul(1e6).div(reserve.weight);
}

Recommendation

Avoid hardcoding integer literals directly into source code when there is a
better expression available. In this case 1e6 is used because weights are
denoted in percent to base PPM_RESOLUTION (=100%).

5.9 zBanc - DynamicLiquidTokenConverter avoid potential
converter type overlap with bancor Minor Acknowledged

Resolution

Acknowledged by providing the following statement:

5.24 the converterType relates to an array selector in the test
helpers, so would be inconvenient to make a higher value. we will
have to maintain the value when rebasing in
DynamicLiquidTokenConverter & Factory, ConverterUpgrader, and
the ConverterUpgrader.js test �ile and Converter.js test helper �ile.

Description

The system is forked frombancorprotocol/contracts-solidity. As such, it is very
likely that security vulnerabilities reported to bancorprotocol upstream need to

https://github.com/bancorprotocol/contracts-solidity

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 27/31

be merged into the zer0/zBanc fork if they also affect this codebase. There is
also a chance that security �ixes will only be available with feature releases or
that the zer0 development team wants to merge upstream features into the
zBanc codebase.

zBanc introduced converterType=3 for the DynamicLiquidTokenConverter as
converterType=1 and converterType=2 already exist in the bancorprotocol codebase.

Now, since it is unclear if DynamicLiquidTokenConverter will be merged into
bancorprotocol there is a chance that bancor introduces new types that overlap
with the DynamicLiquidTokenConverter converter type (3). It is therefore suggested
to map the DynamicLiquidTokenConverter to a converterType that is unlikely to create
an overlap with the system it was forked from. E.g. use converter type id 1001

instead of 3 (Note: converterType is an uint16).

Note that the current master of the bancorprotocol already appears to de�ined
converterType 3 and 4: https://github.com/bancorprotocol/contracts-
solidity/blob/5f4c53ebda784751c3a90b06aa2c85e9fdb36295/solidity/test/help
ers/Converter.js#L51-L54

Examples

The new custom converter

zBanc/solidity/contracts/converter/types/liquid-
token/DynamicLiquidTokenConverter.sol:L50-L52

function converterType() public pure override returns (uint16) {
 return 3;
}

ConverterTypes from the bancor base system

zBanc/solidity/contracts/converter/types/liquidity-pool-
v1/LiquidityPoolV1Converter.sol:L71-L73

function converterType() public pure override returns (uint16) {
 return 1;
}

https://github.com/bancorprotocol/contracts-solidity/blob/5f4c53ebda784751c3a90b06aa2c85e9fdb36295/solidity/test/helpers/Converter.js#L51-L54

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 28/31

zBanc/solidity/contracts/converter/types/liquidity-pool-
v2/LiquidityPoolV2Converter.sol:L73-L76

*/
function converterType() public pure override returns (uint16) {
 return 2;
}

Recommendation

Choose a converterType id for this custom implementation that does not
overlap with the codebase the system was forked from. e.g. uint16(-1) or 1001

instead of 3 which might already be used upstream.

5.10 zBanc - unnecessary contract duplication Minor ✓ Fixed

Resolution

�ixed with zer0-os/zBanc@ ff3d913 by removing the duplicate contract.

Description

DynamicContractRegistryClient is an exact copy of ContractRegistryClient . Avoid
unnecessary code duplication.

< contract DynamicContractRegistryClient is Owned, Utils {

> contract ContractRegistryClient is Owned, Utils {

Appendix 1 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more
clients (the “Clients”) for performing the analysis contained in these reports (the

https://github.com/zer0-os/zBanc/commit/ff3d91390099a4f729fe50c846485589de4f8173

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 29/31

“Reports”). The Reports may be distributed through other means, including via
ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or
team, and the Reports do not guarantee the security of any particular project.
This Report does not consider, and should not be interpreted as considering or
having any bearing on, the potential economics of a token, token sale or any
other product, service or other asset. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.
No Report provides any warranty or representation to any Third-Party in any
respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the
purpose of making any decisions to buy or sell any token, product, service or
other asset. Speci�ically, for the avoidance of doubt, this Report does not
constitute investment advice, is not intended to be relied upon as investment
advice, is not an endorsement of this project or team, and it is not a guarantee
as to the absolute security of the project. CD owes no duty to any Third-Party by
virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within
the scope of our review within this report. Any Solidity code itself presents
unique and unquanti�iable risks as the Solidity language itself remains under
development and is subject to unknown risks and �laws. The review does not
extend to the compiler layer, or any other areas beyond speci�ied code that
could present security risks. Cryptographic tokens are emergent technologies
and carry with them high levels of technical risk and uncertainty. In some
instances, we may perform penetration testing or infrastructure assessments
depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best practices
in this rapidly evolving area of innovation.

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 30/31

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit.

AUD I TS

FUZZ ING

Subscribe to Our Newsletter

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext
or other computer links, gain access to web sites operated by persons other
than ConsenSys and CD. Such hyperlinks are provided for your reference and
convenience only, and are the exclusive responsibility of such web sites' owners.
You agree that ConsenSys and CD are not responsible for the content or
operation of such Web sites, and that ConsenSys and CD shall have no liability
to you or any other person or entity for the use of third party Web sites. Except
as described below, a hyperlink from this web Site to another web site does not
imply or mean that ConsenSys and CD endorses the content on that Web site or
the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites
to which you link from the Reports. ConsenSys and CD assumes no
responsibility for the use of third party software on the Web Site and shall have
no liability whatsoever to any person or entity for the accuracy or completeness
of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of
the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

CONTACT US

https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/contact/

7/22/22, 8:41 AM Zer0 - zBanc | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zbanc/ 31/31

FUZZ ING

SCR IBBLE

BLOG

TOOLS

RESEARCH

ABOUT

CONTACT

CAREERS

PR IVACY
POL ICY

Stay up-to-date on our latest offerings,
tools, and the world of blockchain
security.

Email*

liz.daldalian@gmail.com

→

https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/privacy-policy/
https://consensys.net/

