
7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 1/33

Zer0 - zAuction

Date May 2021

Lead Auditor David Oz Kashi

Co-auditors Martin Ortner

1 Executive Summary
This report is part of a series of reports presenting the results of our
engagement with zer0 to review zNS, zAuction, and zBanc, zDAO Token.

The review was conducted over four weeks, from 19 April 2021 to 21 May 2021.
A total of 2x4 person-weeks were spent.

1.1 Layout

It was requested to present the results for the four code-bases under review in
individual reports. Links to the individual reports can be found below.

The Executive Summary and Scope sections are shared amongst the individual
reports. They provide a general overview of the engagement and summarize
scope changes and insights into how time was spent during the audit. The
section Recommendations and Findings list the respective findings for the
component under review.

The following reports were delivered:

zNS

AUDITS
FUZZING
SCRIBBLE
ABOUT

https://consensys.net/diligence/audits/private/lkt3wuldda13yz/
https://consensys.net/diligence
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 2/33

zAuction

zBanc

zDAO-Token

1.2 Assessment Log

In the first week, the assessment team focussed its work on the zNS and
zAuction systems. Details on the scope for the components was set by the client

and can be found in the next section. A walkthrough session for the systems in
scope was requested, to understand the fundamental design decisions of the
system as some details were not found in the specification/documentation.
Initial security findings were also shared with the client during this session. It
was agreed to deliver a preliminary report sharing details of the findings during
the end-of-week sync-up. This sync-up is also used to set the focus/scope for
the next week.

In the second week, the assessment team focussed its work on zBanc a
modification of the bancor protocol solidity contracts. The initial code revision
under audit (zBanc 48da0ac1eebbe31a74742f1ae4281b156f03a4bc) was updated half-way
into the week on Wednesday to zBanc (3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4).
Preliminary findings were shared during a sync-up discussing the changing
codebase under review. Thursday morning the client reported that work on the
zDAO Token finished and it was requested to put it in scope for this week as the

token is meant to be used soon. The assessment team agreed to have a brief
look at the codebase, reporting any obvious security issues at best effort until
the end-of-week sync-up meeting (1day). Due to the very limited left until the
weekly sync-up meeting, it was recommended to extend the review into next
week as. Finally it was agreed to update and deliver the preliminary report
sharing details of the findings during the end-of-week sync-up. This sync-up is
also used to set the focus/scope for the next week.

In the third week, the assessment team continued working on zDAO Token on
Monday. We provided a heads-up that the snapshot functionality of zDAO Token
was not working the same day. On Tuesday focus shifted towards reviewing
changes to zAuction (135b2aaddcfc70775fd1916518c2cc05106621ec , remarks). On the
same day the client provided an updated review commit for zDAO Token (
81946d451e8a9962b0c0d6fc8222313ec115cd53) addressing the issue we reported on

https://consensys.net/diligence/audits/private/tzhurqdzo2akk1/
https://consensys.net/diligence/audits/private/c7xp44alj3b1q8/
https://consensys.net/diligence/audits/private/s58r1p3v1lapm5/
https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4bc
https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zDAO-Token/commit/81946d451e8a9962b0c0d6fc8222313ec115cd53

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 3/33

Monday. The client provided an updated review commit for zNS (
ab7d62a7b8d51b04abea895e241245674a640fc1) on Wednesday and zNS (
bc5fea725f84ae4025f5fb1a9f03fb7e9926859a) on Thursday.

As can be inferred from this timeline various parts of the codebases were
undergoing changes while the review was performed which introduces
inefficiencies and may have an impact on the review quality (reviewing frozen
codebase vs. moving target). As discussed with the client we highly recommend
to plan ahead for security activities, create a dedicated role that coordinates
security on the team, and optimize the software development lifecycle to
explicitly include security activities and key milestones, ensuring that code is
frozen, quality tested, and security review readiness is established ahead of any
security activities. It should also be noted that code-style and quality varies a lot
for the different repositories under review which might suggest that there is a
need to better anchor secure development practices in the development
lifecycle.

After a one-week hiatus the assessment team continued reviewing the changes
for zAuction and zBanc . The findings were initially provided with one combined
report and per client request split into four individual reports.

2 Scope
Our review focused on the following components and code revisions:

2.1 Objectives

Together with the zer0 team, we identified the following priorities for our review:

1. Ensure that the system is implemented consistently with the intended
functionality, and without unintended edge cases.

2. Identify known vulnerabilities particular to smart contract systems, as
outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classification Registry.

2.2 Week - 1

https://github.com/zer0-os/zNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1
https://github.com/zer0-os/zNS/commit/bc5fea725f84ae4025f5fb1a9f03fb7e9926859a
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 4/33

zNS (b05e503ea1ee87dbe62b1d58426aaa518068e395) (scope doc) (1, 2)

zAuction (50d3b6ce6d7ee00e7181d5b2a9a2eedcdd3fdb72) (scope doc) (1, 2)

Original Scope overview document

2.3 Week - 2

zBanc (48da0ac1eebbe31a74742f1ae4281b156f03a4bc) initial commit under review

zBanc (3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4) updated commit under review
(mid of week) (scope doc) (1)

Files in Scope:
contracts/converter/types/dynamic-liquid-token/DynamicLiquidTokenConverter

contracts/converter/types/dynamic-liquid-
token/DynamicLiquidTokenConverterFactory

contracts/converter/ConverterUpgrader.sol (added handling new
converterType 3)

zDAO token provided on thursday (scope doc) (1)
Files in Scope:

ZeroDAOToken.sol

MerkleTokenAirdrop.sol

MerkleTokenVesting.sol

MerkleDistributor.sol

TokenVesting.sol

And any relevant Interfaces / base contracts

The zDAO review in week two was performed best effort from Thursday to Friday
attempting to surface any obvious issues until the end-of-week sync-up
meeting.

2.4 Week - 3

Continuing on zDAO token (1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6)

Updated review commit for zAuction (135b2aaddcfc70775fd1916518c2cc05106621ec ,
1) on Monday

Updated review commit for zDAO Token (
81946d451e8a9962b0c0d6fc8222313ec115cd53) on Tuesday

https://github.com/zer0-os/ZNS/commit/b05e503ea1ee87dbe62b1d58426aaa518068e395
https://docs.google.com/document/d/1BCpezFQloL3vn6x9KMbimbdDk9O-E9qyKR9465VZzn8/edit
https://consensys.net/diligence/audits/2021/05/zer0-zauction/doc/ZNS%20Audit%20Checklist.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zauction/doc/Zer0%20ZNS%20-%20Audit%20Checkpoint.pdf
https://github.com/zer0-os/zAuction/commit/50d3b6ce6d7ee00e7181d5b2a9a2eedcdd3fdb72
https://docs.google.com/document/d/1PQLhvhFd-5OCVxZO5vQlx2zmIPGnxFRIJVIItO18YEE
https://consensys.net/diligence/audits/2021/05/zer0-zauction/doc/zAuction%20audit%20prep.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zauction/doc/zAuction%20spec.pdf
https://consensys.net/diligence/audits/2021/05/zer0-zauction/doc/Zer0%20Audit.pdf
https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4bc
https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4
https://docs.google.com/document/d/1NIq6XwEByhliWjDlk032JQspkLoNzJTMtJrBb2jTUJc/edit
https://consensys.net/diligence/audits/2021/05/zer0-zauction/doc/zBanc%20audit%20prep.pdf
https://github.com/zer0-os/zDAO-Token/commit/1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6
https://docs.google.com/document/d/1DocRfk_rv7aTi2U_PyYi6HJR2BZJ_-eRjqJgFKoP5yE/edit#
https://consensys.net/diligence/audits/2021/05/zer0-zauction/doc/Zer0%20DAO%20Token.pdf
https://github.com/zer0-os/zDAO-Token/commit/1b678cb3fc4a8d2ff3ef2d9c5625dff91f6054f6
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zDAO-Token/commit/81946d451e8a9962b0c0d6fc8222313ec115cd53

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 5/33

Updated review commit for zNS (ab7d62a7b8d51b04abea895e241245674a640fc1) on
Wednesday

Updated review commit for zNS (bc5fea725f84ae4025f5fb1a9f03fb7e9926859a) on
Thursday

2.5 Hiatus - 1 Week

The assessment continues for a final week after a one-week long hiatus.

2.6 Week - 4

Updated review commit for zAuction (2f92aa1c9cd0c53ec046340d35152460a5fe7dd0 ,
1)

Updated review commit for zAuction addressing our remarks

Updated review commit for zBanc (ff3d91390099a4f729fe50c846485589de4f8173 , 1)

3 System Overview
This section describes the top-level/deployable contracts, their inheritance
structure and interfaces, actors, permissions and important contract
interactions of the initial system under review. This section does not take any
fundamental changes into account that were introduced during or after the
review was conducted.

Contracts are depicted as boxes. Public reachable interface methods are
outlined as rows in the box. The 🔍 icon indicates that a method is declared as
non-state-changing (view/pure) while other methods may change state. A yellow
dashed row at the top of the contract shows inherited contracts. A green
dashed row at the top of the contract indicates that that contract is used in a
usingFor declaration. Modifiers used as ACL are connected as yellow bubbles in
front of methods.

https://github.com/zer0-os/zDAO-Token/commit/ab7d62a7b8d51b04abea895e241245674a640fc1
https://github.com/zer0-os/zDAO-Token/commit/bc5fea725f84ae4025f5fb1a9f03fb7e9926859a
https://github.com/zer0-os/zAuction/commit/2f92aa1c9cd0c53ec046340d35152460a5fe7dd0
https://docs.google.com/document/d/1YXIdnpNIOkVeWMo783zwOUoL3CNLZ5n6xjDGyC0qY-8/edit
https://github.com/zer0-os/zAuction/commit/8ff0eab02e5c23bb513d90e3ff1ba8fa04f81b7a
https://github.com/zer0-os/zBanc/commit/ff3d91390099a4f729fe50c846485589de4f8173
https://docs.google.com/document/d/10hAa4KllGX-c6i7n_cfPcrTBxWD3ehyXaHAZ9G53ItM/edit

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 6/33

zAuctionAccountant

__constr__

💰 Deposit

Withdraw

💰 zDeposit

zWithdraw

Exchange

SetZauction

SetAdmin

onlyZauction

onlyZauction

onlyZauction

onlyAdmin

onlyAdmin

zauction

admin
to

from

zauctionaddress

newadmin

zAuction
ECDSA

init

acceptBid

acceptWethBid

🔍 recover

🔍 toEthSignedMessageHash

accountantaddress
bidder

nftaddress NFT erc721

transferFrom

WETH erc20

transferFrom

zAuction

zAuction

zAuction is a simple general purpose auction system for NFT’s allowing bidders
to share bids on an async 2nd layer. Bid price is paid in WETH by approving it to
the auction contract or in ETH by depositing it in a WETH -like custom
zAuctionAccountat contract. Auctions are state-less. Bids are not tracked on the

ethereum chain, they don’t expire, there is no functionality to cancel them
which increases the attack surface for the system. The user journe starts with a
bidder sharing a bid on a 2nd layer. The current holder of an NFT can then call
one of the accept* functions to accept a specific bid and transfer ownership to
the recipient. Due to the state-less nature of this system, auctions are not
explicitly created by an nft owner. Unaccepted bids for an auction may still be
valid after one bid was accepted which might allow an nft owner to force the
transfer of ownership by accepting outdated bids.

4 Recommendations

https://consensys.net/diligence/audits/2021/05/zer0-zauction/img/zauction.svg

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 7/33

4.1 Where possible, a specific contract type should be used
rather than address Acknowledged

Description

Consider using the best type available in the function arguments and
declarations instead of accepting address and later casting it to the correct type.

Examples

This is only one of many examples.

zAuction/contracts/zAuction.sol:L22-L26

function init(address accountantaddress) external {

 require(!initialized);

 initialized = true;

 accountant = zAuctionAccountant(accountantaddress);

}

zAuction/contracts/zAuction.sol:L52-L54

IERC721 nftcontract = IERC721(nftaddress);

weth.transferFrom(bidder, msg.sender, bid);

nftcontract.transferFrom(msg.sender, bidder, tokenid);

zAuction/contracts/zAuction.sol:L40-L42

IERC721 nftcontract = IERC721(nftaddress);

accountant.Exchange(bidder, msg.sender, bid);

nftcontract.transferFrom(msg.sender, bidder, tokenid);

zAuction/contracts/zAuctionAccountant.sol:L60-L63

function SetZauction(address zauctionaddress) external onlyAdmin{

 zauction = zauctionaddress;

 emit ZauctionSet(zauctionaddress);

}

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 8/33

4.2 zNS, zAuction - check for inconsistent use of ERC-721
safe* family of methods ✓ Fixed

Resolution

Addressed with the following changes switching to the safe* family of
methods (note that for erc721 this can introduce potentially reentrancy
vectory):

zer0-os/zAuction@ 135b2aa . The client provided the following
statement:

4.9 safeTransferFrom used in Zauction and Zsale

zer0-os/ZNS@ ab7d62a

Description

Domains are minted using safeMint which checks that the recipient accepts the
token if it is a contract. This is basically to avoid that tokens get locked up in
contracts by accident.

When transferring the token the system is not using the safeTransferFrom method
which would perform the same checks. this appears to be inconsistent as
creating a domain would check this condition, but transferring the token won’t.

This may be a design decision, however, it is recommended to document the
rationale behind when checks are to be performed. It should be noted that
token retrieval can be rejected by the recipient when using the safe* method
family.

Examples

zNS/contracts/Registrar.sol:L257-L264

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://github.com/zer0-os/ZNS/commit/ab7d62a7b8d51b04abea895e241245674a640fc1

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 9/33

function _createDomain(

 uint256 domainId,

 address domainOwner,

 address minter,

 address controller

) internal {

 // Create the NFT and register the domain data

 _safeMint(domainOwner, domainId);

zNS/contracts/BasicController.sol:L71-L71

registrar.transferFrom(controller, owner, id);

zNS/contracts/StakingController.sol:L140-L140

registrar.transferFrom(controller, recoveredBidder, id);

zAuction/contracts/zAuction.sol:L42-L42

nftcontract.transferFrom(msg.sender, bidder, tokenid);

4.3 zAuction - consider replacing zAuctionAccountant with a
call to wrap ETH ✓ Fixed

Resolution

zAuctionAccountant has been removed with zer0-os/zAuction@ 135b2aa . The
client provided the following statement:

4.5 accountant deprecated, but address is still used in the hashed
data inputs

4.6 zAuctionAccountant is deprecated, Zauction and Zsale now
have single functions expecting a pre-approved weth balance

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 10/33

Description

zAuctionAccountant is essentially implementing a simplified version of WETH raising
the question of whether it is worth re-creating a variant of WETH which may just
be increasing the overall complexity of the system.

One way to tackle this would be to provide a method that accepts ETH bids that
automatically wraps submissions to WETH or only allow WETH deposits/approvals.

4.4 zAuction - separate test artifacts from system contracts
✓ Fixed

Resolution

Test artifacts are now in a separate folder with zer0-os/zAuction@ 135b2aa .
The client provided the following statement:

4.4 test artifacts separated into tokentest folder

Description

Consider moving ERC721TestToken to a dedicated test subdirectory.

zAuction/contracts/ERC721TestToken.sol:L28-L28

contract ERC721TestToken is Context, AccessControlEnumerable, ERC721Enumerable,

4.5 zAuction - Consider using the openzeppelin npm
packages instead of copying their contracts ✓ Fixed

Resolution

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 11/33

Addressed with zer0-os/zAuction@ 135b2aa and the following statement:

4.3 now using openzeppelin npm packages

Description

It is considered best practice to reference external contracts that are commonly
available via an integrity checked dependency and package management
system from that system instead of copying contracts manually into the projects
source directory.

see zAuction/contracts/oz . Consider importing the contracts via npm.

4.6 zAuction - consider switching to usingFor notation ✓ Fixed

Resolution

The affected contract has been removed with zer0-os/zAuction@ 135b2aa .
The client provided the following statement:

4.2 usingFor notation no longer needed, functions deprecated

Description

Declaring SafeMath usingFor uint256 may improve code readability.

ethbalance[msg.sender] = SafeMath.add(ethbalance[msg.sender], msg.value);

to

ethbalance[msg.sender] = ethbalance[msg.sender].add(msg.value)

Examples

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 12/33

zAuction/contracts/zAuctionAccountant.sol:L34-L34

ethbalance[msg.sender] = SafeMath.add(ethbalance[msg.sender], msg.value);

4.7 zAuction - adhere to commonly used code style and
naming conventions ✓ Fixed

Resolution

Addressed with zer0-os/zAuction@ 135b2aa and the following statement:

4.1 code naming conventions fixed, functions deprecated

Description

Consider following the official solidity code style guidelines. Consider enforcing
code style guidelines in the CI pipeline using style checker/linter tools.

Examples

the initialization function is named initialize in zNS/openzeppelin but init

in zAuction

zAuction/contracts/zAuction.sol:L22-L22

function init(address accountantaddress) external {

Methods in zAuctionAccountant are written in PascalCase which makes them
less easily distinguishable from Events/Contracts.

zAuction/contracts/zAuctionAccountant.sol:L33-L33

function Deposit() external payable {

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.soliditylang.org/en/latest/style-guide.html

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 13/33

lowercase starting events may be hard to distinguish from function calls

zAuction/contracts/zAuctionAccountant.sol:L14-L16

event zDeposited(address indexed depositer, uint256 amount);

event zWithdrew(address indexed withrawer, uint256 amount);

event zExchanged(address indexed from, address indexed to, uint256 amount);

adhere to token contract naming convention: Exchange() -> transfer()

zAuction/contracts/zAuctionAccountant.sol:L54-L58

function Exchange(address from, address to, uint256 amount) external onlyZaucti
 ethbalance[from] = SafeMath.sub(ethbalance[from], amount);

 ethbalance[to] = SafeMath.add(ethbalance[to], amount);

 emit zExchanged(from, to, amount);

}

5 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around
best practices or readability. Code maintainers should use their own
judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
fixed.

5.1 zAuction - incomplete / dead code zWithdraw and

zDeposit Major ✓ Fixed

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 14/33

Resolution

obsolete with changes from zer0-os/zAuction@ 135b2aa removing the
zAccountAccountant .

Description

The code generally does not appear to be production-ready. The methods
zWithdraw and zDeposit do not appear to be properly implemented. zWithdraw

rather burns ETH balance than withdrawing it for an account (missing transfer)
and zDeposit manipulates an accounts balance but never receives the ETH

amount it credits to an account.

Examples

zAuction/contracts/zAuctionAccountant.sol:L44-L52

 function zDeposit(address to) external payable onlyZauction {

 ethbalance[to] = SafeMath.add(ethbalance[to], msg.value);

 emit zDeposited(to, msg.value);

 }

 function zWithdraw(address from, uint256 amount) external onlyZauction {

 ethbalance[from] = SafeMath.sub(ethbalance[from], amount);

 emit zWithdrew(from, amount);

 }

Recommendation

The methods do not seem to be used by the zAuction contract. It is highly
discouraged from shipping incomplete implementations in productive code.
Remove dead/unreachable code. Fix the implementations to perform proper
accounting before reintroducing them if they are called by zAuction.

5.2 zAuction - Unpredictable behavior for users due to admin
front running or general bad timing Major ✓ Fixed

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 15/33

Resolution

obsolete with changes from zer0-os/zAuction@ 135b2aa removing the
zAccountAccountant . The client provided the following remark:

5.20 accountant deprecated

Description

An administrator of zAuctionAccountant contract can update the zAuction contract
without warning. This has the potential to violate a security goal of the system.

Specifically, privileged roles could use front running to make malicious changes
just ahead of incoming transactions, or purely accidental negative effects could
occur due to the unfortunate timing of changes.

In general users of the system should have assurances about the behavior of the
action they’re about to take.

Examples

updating the zAuction takes effect immediately. This has the potential to fail
acceptance of bids by sellers on the now outdated zAuction contract as
interaction with the accountant contract is now rejected. This forces
bidders to reissue their bids in order for the seller to be able to accept them
using the Accountant contract. This may also be used by admins to
selectively censor the acceptance of accountant based bids by changing
the active zAuction address.

zAuction/contracts/zAuctionAccountant.sol:L60-L68

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 16/33

 function SetZauction(address zauctionaddress) external onlyAdmin{

 zauction = zauctionaddress;

 emit ZauctionSet(zauctionaddress);

 }

 function SetAdmin(address newadmin) external onlyAdmin{

 admin = newadmin;

 emit AdminSet(msg.sender, newadmin);

 }

Upgradeable contracts may introduce the same unpredictability issues
where the proxyUpgradeable owner may divert execution to a new zNS
registrar implementation selectively for certain transactions or without prior
notice to users.

Recommendation

The underlying issue is that users of the system can’t be sure what the behavior
of a function call will be, and this is because the behavior can change at any
time.

We recommend giving the user advance notice of changes with a time lock. For
example, make all system-parameter and upgrades require two steps with a
mandatory time window between them. The first step merely broadcasts to
users that a particular change is coming, and the second step commits that
change after a suitable waiting period. This allows users that do not accept the
change to withdraw immediately.

Validate arguments before updating contract addresses (at least != current/0x0).
Consider implementing a 2-step admin ownership transfer (transfer+accept) to
avoid losing control of the contract by providing the wrong ETH address.

5.3 zAuction, zNS - Bids cannot be cancelled, never expire,
and the auction lifecycle is unclear Major ✓ Fixed

Resolution

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 17/33

Addressed with zer0-os/zNS@ab7d62a by refactoring the
StakingController to control the lifecycle of bids instead of handling this

off-chain.

Addressed with zer0-os/zAuction@ 135b2aa for zAuction by adding a
bid/saleOffer expiration for bids. The client also provided the following
statement:

5.6 added expireblock and startblock to zauction, expireblock to
zsale
Decided not to add a cancel function. Paying gas to cancel
isn’t ideal, and it can be used as a griefing function. though that’s
still possible to do by moving weth but differently

The stateless nature of auctions may make it hard to enforce bid/sale
expirations and it is not possible to cancel a bid/offer that should not be
valid anymore. The expiration reduces the risk of old offers being used as
they now automatically invalidate after time, however, it is still likely that
multiple valid offers may be present at the same time. As outlined in the
recommendation, one option would be to allow someone who signed a
commitment to explicitly cancel it in the contract. Another option would be
to create a stateful auction where the entity that puts up something for
“starts” an auction, creating an auction id, requiring bidders to bid on that
auction id. Once a bid is accepted the auction id is invalidated which
invalidates all bids that might be floating around.

UPDATE Fixed with zer0-os/zAuction@ 2f92aa1 for zAuction/zSale by allowing
the seller (zSale) to cancel their offer, and by allowing the bidder (zAuction)
to cancel bids (pot. more than one per auction) up to a certain price
threshold. Since auctionId can only be used once, all other bids for an
auction are automatically invalidated after a bid is accepted. Note that the
current version is using a unique number as an auction id. There can be
concurrent auctions that by chance or maliciously use the same auction id.
The first auction to pass will cancel the competing auction that was using
the same id. This fact can be used as a griefing vector to terminate running
auctions by reusing the other auctions id and self-accepting the bid. The
other auction cannot be fulfilled anymore.

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://github.com/zer0-os/zAuction/commit/2f92aa1c9cd0c53ec046340d35152460a5fe7dd0

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 18/33

Description

The lifecycle of a bid both for zAuction and zNS is not clear, and has many flaws.

zAuction - Consider the case where a bid is placed, then the underlying
asset in being transferred to a new owner. The new owner can now force to
sell the asset even though it’s might not be relevant anymore.

zAuction - Once a bid was accepted and the asset was transferred, all other
bids need to be invalidated automatically, otherwise and old bid might be
accepted even after the formal auction is over.

zAuction , zNS - There is no way for the bidder to cancel an old bid. That
might be useful in the event of a significant change in market trend, where
the old pricing is no longer relevant. Currently, in order to cancel a bid, the
bidder can either withdraw his ether balance from the zAuctionAccountant , or
disapprove WETH which requires an extra transaction that might be front-
runned by the seller.

Examples

zAuction/contracts/zAuction.sol:L35-L45

function acceptBid(bytes memory signature, uint256 rand, address bidder, uint25
 address recoveredbidder = recover(toEthSignedMessageHash(keccak256(abi.enco
 require(bidder == recoveredbidder, 'zAuction: incorrect bidder');

 require(!randUsed[rand], 'Random nonce already used');

 randUsed[rand] = true;

 IERC721 nftcontract = IERC721(nftaddress);

 accountant.Exchange(bidder, msg.sender, bid);

 nftcontract.transferFrom(msg.sender, bidder, tokenid);

 emit BidAccepted(bidder, msg.sender, bid, nftaddress, tokenid);

}

zNS/contracts/StakingController.sol:L120-L152

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 19/33

 function fulfillDomainBid(

 uint256 parentId,

 uint256 bidAmount,

 uint256 royaltyAmount,

 string memory bidIPFSHash,

 string memory name,

 string memory metadata,

 bytes memory signature,

 bool lockOnCreation,

 address recipient

) external {

 bytes32 recoveredBidHash = createBid(parentId, bidAmount, bidIPFSHash, name);
 address recoveredBidder = recover(recoveredBidHash, signature);

 require(recipient == recoveredBidder, "ZNS: bid info doesnt match/exist");

 bytes32 hashOfSig = keccak256(abi.encode(signature));

 require(approvedBids[hashOfSig] == true, "ZNS: has been fullfilled");

 infinity.safeTransferFrom(recoveredBidder, controller, bidAmount);

 uint256 id = registrar.registerDomain(parentId, name, controller, recoveredBi
 registrar.setDomainMetadataUri(id, metadata);

 registrar.setDomainRoyaltyAmount(id, royaltyAmount);

 registrar.transferFrom(controller, recoveredBidder, id);

 if (lockOnCreation) {

 registrar.lockDomainMetadataForOwner(id);
 }

 approvedBids[hashOfSig] = false;

 emit DomainBidFulfilled(

 metadata,

 name,

 recoveredBidder,
 id,

 parentId

);

}

Recommendation

Consider adding an expiration field to the message signed by the bidder both
for zAuction and zNS .
Consider adding auction control, creating an auctionId ,
and have users bid on specific auctions. By adding this id to the signed
message, all other bids are invalidated automatically and users would have to
place new bids for a new auction. Optionally allow users to cancel bids
explicitly.

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 20/33

5.4 zAuction - pot. initialization fronrunning and unnecessary
init function Medium ✓ Fixed

Resolution

Addressed with zer0-os/zAuction@ 135b2aa and the following statement:

5.21 init deprecated, constructor added

Description

The zAuction initialization method is unprotected and while only being
executable once, can be called by anyone. This might allow someone to monitor
the mempool for new deployments of this contract and fron-run the initialization
to initialize it with different parameters.

A mitigating factor is that this condition can be detected by the deployer as
subsequent calls to init() will fail.

Note: this doesn’t adhere to common interface naming convention/oz
naming convention where this method would be called initialize .

Note: that zNS in contrast relies on ou/initializable pattern with proper
naming.

Note: that this function might not be necessary at all and should be
replaced by a constructor instead, as the contract is not used with a proxy
pattern.

Examples

zAuction/contracts/zAuction.sol:L22-L26

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 21/33

function init(address accountantaddress) external {

 require(!initialized);

 initialized = true;

 accountant = zAuctionAccountant(accountantaddress);

}

Recommendation

The contract is not used in a proxy pattern, hence, the initialization should be
performed in the constructor instead.

5.5 zAuction - unclear upgrade path Medium ✓ Fixed

Resolution

obsolete with changes from zer0-os/zAuction@ 135b2aa removing the
zAccountAccountant .

Description

zAuction appears to implement an upgrade path for the auction system via
zAuctionAccountant . zAuction itself does not hold any value. The zAuctionAccountant

can be configured to allow only one zAution contract to interact with it. The
update of the contract reference takes effect immediately
(https://github.com/ConsenSys/zer0-zauction-audit-2021-05/issues/7).

Acceptance of bids via the accountant on the old contract immediately fail after
an admin updates the referenced zAuction contract while WETH bids may still
continue. This may create an unfavorable scenario where two contracts may be
active in parallel accepting WETH bids.

It should also be noted that 2nd layer bids (signed data) using the accountant
for the old contract will not be acceptable anymore.

Examples

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://github.com/ConsenSys/zer0-zauction-audit-2021-05/issues/7)

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 22/33

zAuction/contracts/zAuctionAccountant.sol:L60-L63

function SetZauction(address zauctionaddress) external onlyAdmin{

 zauction = zauctionaddress;

 emit ZauctionSet(zauctionaddress);

}

Recommendation

Consider re-thinking the upgrade path. Avoid keeping multiple versions of the
auction contact active.

5.6 zAuction, zNS - gas griefing by spamming offchain fake
bids Medium Acknowledged

Resolution

Addressed and acknowledged with changes from zer0-os/zAuction@
135b2aa . The client provided the following remark:

5.19 I have attempted to order the requires sensibly, putting the
least expensive first. Please advise if the ordering is optimal. gas
griefing will be mitigated in the dapp with off-client checks

Description

The execution status of both zAuction.acceptBid and
StakingController.fulfillDomainBid transactions depend on the bidder, as his

approval is needed, his signature is being validated, etc. However, these
transactions can be submitted by accounts that are different from the bidder
account, or for accounts that do not have the required funds/deposits available,
luring the account that has to perform the on-chain call into spending gas on a
transaction that is deemed to fail (gas griefing). E.g. posting high-value fake bids
for zAuction without having funds deposited or WETH approved.

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 23/33

Examples

zNS/contracts/StakingController.sol:L120-L152

 function fulfillDomainBid(

 uint256 parentId,

 uint256 bidAmount,

 uint256 royaltyAmount,

 string memory bidIPFSHash,

 string memory name,

 string memory metadata,

 bytes memory signature,

 bool lockOnCreation,

 address recipient

) external {

 bytes32 recoveredBidHash = createBid(parentId, bidAmount, bidIPFSHash, name);
 address recoveredBidder = recover(recoveredBidHash, signature);

 require(recipient == recoveredBidder, "ZNS: bid info doesnt match/exist");

 bytes32 hashOfSig = keccak256(abi.encode(signature));

 require(approvedBids[hashOfSig] == true, "ZNS: has been fullfilled");

 infinity.safeTransferFrom(recoveredBidder, controller, bidAmount);

 uint256 id = registrar.registerDomain(parentId, name, controller, recoveredBi
 registrar.setDomainMetadataUri(id, metadata);

 registrar.setDomainRoyaltyAmount(id, royaltyAmount);

 registrar.transferFrom(controller, recoveredBidder, id);

 if (lockOnCreation) {

 registrar.lockDomainMetadataForOwner(id);
 }

 approvedBids[hashOfSig] = false;

 emit DomainBidFulfilled(

 metadata,

 name,

 recoveredBidder,
 id,

 parentId

);

}

zAuction/contracts/zAuction.sol:L35-L44

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 24/33

function acceptBid(bytes memory signature, uint256 rand, address bidder, uint25
 address recoveredbidder = recover(toEthSignedMessageHash(keccak256(abi.enco
 require(bidder == recoveredbidder, 'zAuction: incorrect bidder');

 require(!randUsed[rand], 'Random nonce already used');

 randUsed[rand] = true;

 IERC721 nftcontract = IERC721(nftaddress);

 accountant.Exchange(bidder, msg.sender, bid);

 nftcontract.transferFrom(msg.sender, bidder, tokenid);

 emit BidAccepted(bidder, msg.sender, bid, nftaddress, tokenid);

}

Recommendation

Revert early for checks that depend on the bidder before performing gas-
intensive computations.

Consider adding a dry-run validation for off-chain components before
transaction submission.

5.7 zAuction - functionality outlined in specification that is
not implemented yet Medium ✓ Fixed

Resolution

implemented as zSale with changes from zer0-os/zAuction@ 135b2aa .

Description

The specification outlines three main user journeys of which one does not seem
to be implemented.

1. Users will be able to do simple transfer of NFTs. - which does not require
functionality in the smart contract

2. Users will be able to post NFTs at a sale price, and buy at that price. - does
not seem to be implemented

3. Users will be able to post NFTs for auction, bid on auctions, and accept bids
- is implemented

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec
https://docs.google.com/document/d/1FvQGTMJPQHcmga10vCh52AdSoKcHBgUkFyQggvbMM6U

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 25/33

Recommendation

User flow (2) is not implemented in the smart contract system. Consider
updating the spec or clearly highlighting functionality that is still in
development for it to be excluded from security testing.

5.8 zAuction - auctions/offers can be terminated by reusing
the auction id Medium ✓ Fixed

Resolution

Addressed with zer0-os/zAuction@ 8ff0eab by binding saleId to the seller

in zSale and the auctionId to the bidder in zAuction .

In the zSale case the saleId is chosen by the seller. The offer (signed offer
parameters including saleid) is shared on an off-chain channel. The buyer
calls zSale.purchase to buy the token from the offer. The offer and all offers
containing the same seller+saleid are then invalidated.

In zAuction there is no seller or someone who initiates an auction. Anyone
can bid for nft’s held by anyone else. The bidder chooses an auction id.
There might be multiple bidders. Since the auctionId is an individual choice
and the smart contract does not enforce an auction to be started there may
be multiple auctions for the same token but using different auction ids. The
current mechanism automatically invalidates all current bids for the
token+auctionId combination for the winning bidder. Bids by other holders
are not automatically invalidated but they can be invalidated manually via
cancelBidsUnderPrice for an auctionId. Note that the winning bid is chosen by

the nftowner/seller. The new owner of the nft may be able to immediately
accept another bid and transfer the token
[seller]--acceptBid-->[newOwner-A]--acceptBid-->[newOwner-B] .

Description

https://github.com/zer0-os/zAuction/commit/8ff0eab02e5c23bb513d90e3ff1ba8fa04f81b7a

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 26/33

zer0-os/zAuction@ 2f92aa1 introduced a way of tracking auctions/sales by using
an auctionId/saleId . The id’s are unique and the same id cannot be used for
multiple auctions/offers.

Two different auctions/offers may pick the same id, the first auction/offer will go
through while the latter cannot be fulfilled anymore. This may happen
accidentally or intentionally be forced by a malicious actor to terminate active
auctions/sales (griefing, front-running).

Examples

Alice puts out an offer for someone to buy nft X at a specific price. Bob decides
to accept that offer and buy the nft by calling
zSale.purchase(saleid, price, token, ...) . Mallory monitors the mempool, sees this

transaction, front-runs it to fulfill its own sale (for a random nft he owns) reusing
the saleid from Bobs transaction. Since Mallories transaction marks the saleid as
consumed it terminates Alie’s offer and hence Bob cannot buy the token as the
transaction will revert.

Recommendation

Consider using keccak(saleid+nftcontract+nfttokenid) as the unique sale/auction
identifier instead, or alternatively associate the bidder address with the
auctionId (require that consumed[bidder][auctionId]== false)

5.9 zAuction - hardcoded ropsten token address Minor ✓ Fixed

Resolution

Addressed with zer0-os/zAuction@ 135b2aa and the following statement:

5.30 weth address in constructor

Note: does not perform input validation as recommended

https://github.com/zer0-os/zAuction/commit/2f92aa1c9cd0c53ec046340d35152460a5fe7dd0
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 27/33

Description

The auction contract hardcodes the WETH ERC20 token address. this address
will not be functional when deploying to mainnet.

Examples

zAuction/contracts/zAuction.sol:L15-L16

 IERC20 weth = IERC20(address(0xc778417E063141139Fce010982780140Aa0cD5Ab));

Recommendation

Consider taking the used WETH token address as a constructor argument. Avoid
code changes to facilitate testing! Perform input validation on arguments
rejecting address(0x0) to facilitate the detection of potential misconfiguration in
the deployment pipeline.

5.10 zAuction - accountant allows zero value
withdrawals/deposits/exchange Minor ✓ Fixed

Resolution

Obsolete. The affected component has been removed from the system with
zer0-os/zAuction@ 135b2aa .

Description

Zero value transfers effectively perform a no-operation sometimes followed by
calling out to the recipient of the withdrawal.

A transfer where from==to or where the value is 0 is ineffective.

Examples

https://ropsten.etherscan.io/address/0xc778417e063141139fce010982780140aa0cd5ab
https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 28/33

zAuction/contracts/zAuctionAccountant.sol:L38-L42

function Withdraw(uint256 amount) external {

 ethbalance[msg.sender] = SafeMath.sub(ethbalance[msg.sender], amount);

 payable(msg.sender).transfer(amount);

 emit Withdrew(msg.sender, amount);

}

zAuction/contracts/zAuctionAccountant.sol:L33-L36

function Deposit() external payable {

 ethbalance[msg.sender] = SafeMath.add(ethbalance[msg.sender], msg.value);

 emit Deposited(msg.sender, msg.value);

}

zAuction/contracts/zAuctionAccountant.sol:L44-L58

 function zDeposit(address to) external payable onlyZauction {

 ethbalance[to] = SafeMath.add(ethbalance[to], msg.value);

 emit zDeposited(to, msg.value);

 }

 function zWithdraw(address from, uint256 amount) external onlyZauction {

 ethbalance[from] = SafeMath.sub(ethbalance[from], amount);

 emit zWithdrew(from, amount);

 }

 function Exchange(address from, address to, uint256 amount) external onlyZa
 ethbalance[from] = SafeMath.sub(ethbalance[from], amount);

 ethbalance[to] = SafeMath.add(ethbalance[to], amount);

 emit zExchanged(from, to, amount);

 }

Recommendation

Consider rejecting ineffective withdrawals (zero value) or at least avoid issuing a
zero value ETH transfers. Avoid emitting successful events for ineffective calls to
not trigger 3rd party components on noop’s.

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 29/33

5.11 zAuction - seller should not be able to accept their own
bid Minor ✓ Fixed

Resolution

Addressed with zer0-os/zAuction@ 135b2aa by disallowing the seller to
accept their own bid. The client provided the following note:

5.28 seller != buyer required

Description

A seller can accept their own bid which is an ineffective action that is emitting
an event.

Examples

zAuction/contracts/zAuction.sol:L35-L56

https://github.com/zer0-os/zAuction/commit/135b2aaddcfc70775fd1916518c2cc05106621ec

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 30/33

function acceptBid(bytes memory signature, uint256 rand, address bidder, uint25
 address recoveredbidder = recover(toEthSignedMessageHash(keccak256(abi.enco
 require(bidder == recoveredbidder, 'zAuction: incorrect bidder');

 require(!randUsed[rand], 'Random nonce already used');

 randUsed[rand] = true;

 IERC721 nftcontract = IERC721(nftaddress);

 accountant.Exchange(bidder, msg.sender, bid);

 nftcontract.transferFrom(msg.sender, bidder, tokenid);

 emit BidAccepted(bidder, msg.sender, bid, nftaddress, tokenid);

}

/// @dev 'true' in the hash here is the eth/weth switch

function acceptWethBid(bytes memory signature, uint256 rand, address bidder, ui
 address recoveredbidder = recover(toEthSignedMessageHash(keccak256(abi.enco
 require(bidder == recoveredbidder, 'zAuction: incorrect bidder');

 require(!randUsed[rand], 'Random nonce already used');

 randUsed[rand] = true;

 IERC721 nftcontract = IERC721(nftaddress);

 weth.transferFrom(bidder, msg.sender, bid);

 nftcontract.transferFrom(msg.sender, bidder, tokenid);

 emit WethBidAccepted(bidder, msg.sender, bid, nftaddress, tokenid);

}

Recommendation

Disallow transfers to self.

Appendix 1 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more
clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via
ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or
team, and the Reports do not guarantee the security of any particular project.
This Report does not consider, and should not be interpreted as considering or
having any bearing on, the potential economics of a token, token sale or any
other product, service or other asset. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 31/33

No Report provides any warranty or representation to any Third-Party in any
respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the
purpose of making any decisions to buy or sell any token, product, service or
other asset. Specifically, for the avoidance of doubt, this Report does not
constitute investment advice, is not intended to be relied upon as investment
advice, is not an endorsement of this project or team, and it is not a guarantee
as to the absolute security of the project. CD owes no duty to any Third-Party by
virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of Solidity code and only the Solidity code we note
as being within the scope of our review within this report. The Solidity language
itself remains under development and is subject to unknown risks and flaws. The
review does not extend to the compiler layer, or any other areas beyond Solidity
that could present security risks. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best practices
in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext
or other computer links, gain access to web sites operated by persons other
than ConsenSys and CD. Such hyperlinks are provided for your reference and
convenience only, and are the exclusive responsibility of such web sites' owners.
You agree that ConsenSys and CD are not responsible for the content or
operation of such Web sites, and that ConsenSys and CD shall have no liability
to you or any other person or entity for the use of third party Web sites. Except
as described below, a hyperlink from this web Site to another web site does not
imply or mean that ConsenSys and CD endorses the content on that Web site or
the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites
to which you link from the Reports. ConsenSys and CD assumes no

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 32/33

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit.

AUD I TS

FUZZ ING

SCR IBBLE

BLOG

TOOLS

RESEARCH

ABOUT

CONTACT

CAREERS

PR IVACY
POL ICY

Subscribe to Our Newsletter
Stay up-to-date on our latest offerings,
tools, and the world of blockchain
security.

Email*

liz.daldalian@gmail.com

→

responsibility for the use of third party software on the Web Site and shall have
no liability whatsoever to any person or entity for the accuracy or completeness
of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of
the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

CONTACT US

https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/privacy-policy/
https://consensys.net/diligence/contact/

7/22/22, 8:41 AM Zer0 - zAuction | ConsenSys Diligence

https://consensys.net/diligence/audits/2021/05/zer0-zauction/ 33/33

https://consensys.net/

